1
|
Cao X, Ma H, Li SA, Huang H, Cui F, Tanentzap AJ. Enhanced Release and Reactivity of Soil Water-Extractable Organic Matter Following Wildfire in a Subtropical Forest. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3992-4002. [PMID: 39982015 DOI: 10.1021/acs.est.4c13557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Climate-driven increases in wildfire frequency may disrupt soil carbon dynamics, potentially creating positive feedback within global carbon cycle. However, the release and lability of soil carbon following wildfire remain unclear, limiting our ability to predict fire impacts on carbon cycling. Here, we investigated chemical alterations in soil water-extractable organic matter (WEOM) following a subtropical forest wildfire by comparing burned soils to an adjacent unburned site. The consensus is that fire-altered DOM is aromatic and less reactive. However, we found that 10 months postfire, burned soils contained nearly three times more water-extractable organic carbon (WEOC) than the control site. Reactomics analysis further revealed an overall 8-fold increase in potential reactivity of this carbon, identified by higher abundances of molecular formulas involved in identified microbial reaction pathways. Specifically, burned soils exhibited elevated potential oxidative enzyme reactions, linked to a higher nominal oxidation state of carbon (NOSC) in WEOM. Metagenomic analysis revealed an enrichment of microbial taxa specialized in degrading aromatic compounds in burned areas, supporting the occurrence of potential microbial reaction pathways acting on WEOM in postfire soils. These findings highlight that wildfires may accelerate soil carbon loss through reactive WEOM mobilization and microbial response, with implications for long-term carbon-climate projections.
Collapse
Affiliation(s)
- Xinghong Cao
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Hua Ma
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Sheng-Ao Li
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Hai Huang
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Fuyi Cui
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Andrew J Tanentzap
- Ecosystems and Global Change Group, School of the Environment, Trent University, Peterborough, Ontario K9L 0G2, Canada
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg 26129, Germany
| |
Collapse
|
2
|
Xing Y, Cheng L, Zheng L, Wu H, Tan Q, Wang X, Tian Q. Brownification increases the abundance of microorganisms related to carbon and nitrogen cycling in shallow lakes. ENVIRONMENTAL RESEARCH 2024; 257:119243. [PMID: 38810820 DOI: 10.1016/j.envres.2024.119243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Brownification in aquatic ecosystems under global change has attracted attention. The composition and quantity of dissolved organic matter transported from various land use types to lakes differ significantly, causing varying ecological effects of lake brownification by region. Bacterial communities make a significant contribution to the material cycle of ecosystems and are sensitive to environmental changes. In this study, a series of mesocosm systems were used to simulate forest lakes and urban lakes with different degrees of brownification, and a high-throughput amplicon sequencing technique was used to explore the changes in the composition, structure, and function of bacterial communities in shallow lakes undergoing brownification. Principal coordinate analysis (PCoA) and Jensen‒Shannon distance typing analysis both indicated significant differences in bacterial communities between forest lakes and urban lakes. The α diversity of bacterial communities in urban lakes increased with the degree of brownification. However, whether forest lakes or urban lakes, brownification increased the abundance of carbon cycling-related bacterial phyla (Proteobacteria, Poribacteria, and Chloroflexi) and nitrogen cycling-related bacterial genera (Microbacteriaceae, Limnohabitans, Comamonadaceae, Bacillus, and Rhizobiales_Incertae_Sedis). Additionally, the carbon and nitrogen cycling functions of bacterial communities in forest lakes are dominant, while those in urban lakes are dominated by functions related to light. Our study has preliminarily revealed that lake brownification promotes the growth of carbon and nitrogen cycling microorganisms, providing a new paradigm for understanding the response of lake ecosystems in different catchment areas to environmental changes and the carbon and nitrogen cycling processes in shallow lake ecosystems.
Collapse
Affiliation(s)
- Yuzi Xing
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Lirong Cheng
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Lei Zheng
- College of Water Science, Beijing Normal University, Beijing, 100875, China.
| | - Haoming Wu
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Qiuyang Tan
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Xue Wang
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Qi Tian
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
3
|
Song Y, Cao X, Li SA, Li Z, Grossart HP, Ma H. Human activities-impacted lake dissolved organic matter (DOM) affects phycosphere microbial diversity and DOM diversification via carbon metabolism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:122011. [PMID: 39094415 DOI: 10.1016/j.jenvman.2024.122011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Photosynthetic carbon sequestration and microbial carbon metabolism are major processes of algae-bacteria interactions, affecting pollutant degradation as well as fundamental biogeochemical cycles in aquatic systems. Human-induced land-use changes greatly alter the molecular composition and input of terrestrial dissolved organic matter (DOM) in inland lakes. However, how the origin of DOM leads to varying effects on phycosphere microbial communities or molecular composition of DOM, e.g., via carbon metabolism, has been little studied in freshwater. Here, we incubated the cyanobacterium Microcystis aeruginosa and a bacterial community from natural lakes to establish an alga-bacteria model system. This allowed us to investigate how DOM from different sources affects phycosphere microbial diversity and DOM diversification. We showed that Suwannee River fulvic acid (SRFA), Suwannee River natural organic matter (SRNOM) and cropland lake DOM promote algal growth, whereas DOM from an urban lake inhibits algal growth. Algal metabolites and DOM together shaped the chemotaxis response of phycosphere communities. High-resolution mass spectrometry analysis demonstrated that DOM chemo-diversity tended to become uniform after interactions of diverse DOM sources with the algae-bacteria symbiosis system. Molecular thermodynamic analysis of DOM based on a substrate-explicit model further verified that microbial interactions render DOM less bioavailable and thus increase recalcitrant DOM formation. Metabolome analysis uncovered that DOM addition intensifies metabolic pathways related to labile and recalcitrant DOM utilization (mainly lignin/carboxyl-rich alicyclic molecule (CRAM)-like DOM, unsaturated hydrocarbon), whereby cofactor and vitamin metabolism represented an extremely strong activity in all metabolic pathways. Our results highlight covariation and interactions of DOM with microbial metabolism at the molecular level and expands our understanding of microbially mediated DOM shaping aquatic carbon cycling.
Collapse
Affiliation(s)
- Yingyue Song
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Xinghong Cao
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Sheng-Ao Li
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Zhe Li
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Hans-Peter Grossart
- Plankton and Microbial Ecology, Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhuette 2, 16775, Neuglobsow, Germany; Institute of Biochemistry and Biology, Potsdam University, Maulbeerallee 2, 14469, Potsdam, Germany
| | - Hua Ma
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
4
|
Cao X, Li SA, Huang H, Ma H. Wildfire Impacts on Molecular Changes of Dissolved Organic Matter during Its Passage through Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38904350 DOI: 10.1021/acs.est.3c11056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The frequency and intensity of global wildfires are escalating, leading to an increase in derived pyrogenic dissolved organic matter (pyDOM), which potentially influences the riverine carbon reservoir and poses risks to drinking water safety. However, changes in pyDOM properties as it traverses through soil to water bodies are highly understudied due to the challenges of simulating such processes under laboratory conditions. In this study, we extracted soil DOM along hillslope gradients and soil depths in both burned and unburned catchments post wildfire. Using high-resolution mass spectrometry and a substrate-explicit model, we observed significant increases in the relative abundance of condensed aromatics (ConAC) and tannins in wildfire-affected soil DOM. Wildfire-affected soil DOM also displayed a broader spectrum of molecular and thermodynamic properties, indicative of its diverse composition and reactivity. Furthermore, as the fire-induced weakening of topsoil microbial reprocessing abilities hindered the transformation of plant-derived DOM, the relative abundance of lignin-like compounds increased with soil depth in the fire regions. Meanwhile, the distribution of shared molecular formulas along the hillslope gradient (from shoulder to toeslope) exhibited analogous patterns in both burned and unburned catchments. Although there was an increased prevalence of ConAC and tannin in the burned catchments, the relative abundance of these fractions diminished along the hillslope in all three catchments. Based on the substrate-explicit model, the biodegradability exhibited by wildfire-affected DOM fractions offers the possibility of its conversion along hillslopes. Our findings reveal the spatial distribution of DOM properties after a wildfire, facilitating accurate evaluation of dissolved organic carbon composition involved in the watershed-scale carbon cycle.
Collapse
Affiliation(s)
- Xinghong Cao
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Sheng-Ao Li
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Hai Huang
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Hua Ma
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| |
Collapse
|
5
|
Li SA, Wang Q, Ma H, Cao X, Song Y, Cui F, Tanentzap AJ. Photochemical processes transform dissolved organic matter differently depending on its initial composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171465. [PMID: 38453086 DOI: 10.1016/j.scitotenv.2024.171465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/09/2024]
Abstract
Dissolved organic matter (DOM) is one of the most important fluxes in the global carbon cycle but its response to light exposure remains unclear at a molecular-level. The chemical response of DOM to light should vary with its molecular composition and environmental conditions while some basic hypotheses are still unclear, such as the balance between photobleaching and photo-humification and the question of oxidative properties. Here we exposed aquatic DOM from diverse freshwaters impacted by different levels of anthropogenic activity and algal exudates to environmentally-realistic light conditions. We found that photobleaching occurred in DOM with relatively high initial humic content producing low H/C molecules, whereas DOM with low initial humic content was humified. DOM pools with relatively high initial saturation and low aromaticity were prone to transform towards more unsaturated molecular formulae and high H/C molecules with a distinct decrease of bioavailability. Photo-transformation was mainly influenced by reactive intermediates, with reactive oxygen species (ROS) playing a dominant role in humification when the initial humus content of DOM was high. In contrast, for algal DOM with high protein content, it was likely that the autoxidation of excited state DOM was more important than indirect oxidation involving ROS. Our results reveal how photo-transformation patterns depend on the initial composition of DOM and provide new insights into the role of photochemical processes in biogeochemical cycling of DOM.
Collapse
Affiliation(s)
- Sheng-Ao Li
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Qianru Wang
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Hua Ma
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Xinghong Cao
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yingyue Song
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Fuyi Cui
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Andrew J Tanentzap
- Ecosystems and Global Change Group, School of the Environment, Trent University, Peterborough, Ontario K9L 0G2, Canada
| |
Collapse
|
6
|
Liu C, Li L, Zhi Y, Chen J, Zuo Q, He Q. Molecular insight into the vertical migration and degradation of dissolved organic matter in riparian soil profiles. ENVIRONMENTAL RESEARCH 2024; 245:118013. [PMID: 38141915 DOI: 10.1016/j.envres.2023.118013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/13/2023] [Accepted: 12/21/2023] [Indexed: 12/25/2023]
Abstract
Due to the molecular complexity of dissolving organic matter (DOM), the vertical molecular distribution of riparian soil DOM (especially dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP)) in different land use types and their relationship with the bacterial community is still unclear. This study analyzed the spectral characteristics of riparian soil DOM from 0 to 100 cm in wild grassland, agricultural land, and bare land. The molecular distribution of DOM was revealed through Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and the specific relationship between DOM and bacterial community composition (BCC) was evaluated. The results showed that the DOM in the upper soil layer (0-40 cm) was mainly composed of recalcitrant macromolecular organics, while that in the lower layer (40-100 cm) was labile small molecular organics. In agricultural land, the total storage of DOM was lower than that in wild grassland, but with a higher abundance of recalcitrant organic carbon (lignin, etc.). At the same time, the bacterial community in agricultural land is shifting towards copiotrophs. In addition, the abundance of labile C degrading genes increases with nitrate as the main electron acceptor. However, sulfates are mainly used as electron acceptors in wild grasslands. Both DOP and DON were dominated by lignin and displayed higher chemical diversity in the upper soil. The bioavailability of DOP in three types of soil is higher than that of DON. DOM-BCC network analysis shows that the recalcitrant DON and DOP molecules in soil are positively correlated with phylum Actinobacteriota in agricultural land. These results emphasize that the DOM molecular characteristics were closely related to the function of the soil bacterial community.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Lin Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| | - Yue Zhi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Junyu Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Qingyang Zuo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
7
|
Ma J, Zhou M, Peng Y, Tuo Y, Zhou C, Liu K, Huang Y, He F, Lai Q, Zhang Z, Kinouchi T, Li S, Xu X, Wu X, Lin X, Li W, Wang G. Instability in a carbon pool driven by multiple dissolved organic matter sources in a eutrophic lake basin: Potential factors for increased greenhouse gas emissions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 350:119697. [PMID: 38035504 DOI: 10.1016/j.jenvman.2023.119697] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
Lakes serve as vital reservoirs of dissolved organic matter (DOM) and play pivotal roles in biogeochemical carbon cycles. However, the sources and compositions of DOM in freshwater lakes and their potential effects on lake sediment carbon pools remain unclear. In this study, seven inflowing rivers in the Lake Taihu basin were selected to explore the potential effects of multi-source DOM inputs on the stability of the lake sediment carbon pool. The results showed the high concentrations of dissolved organic carbon in the Lake Taihu basin, accompanied by a high complexity level. Lignins constituted the majority of DOM compounds, surpassing 40% of the total, while the organic carbon content was predominantly composed of humic acids (1.02-3.01 g kg-1). The high amounts of lignin oxidative cleavage led to CHO being the main molecular structure in the DOM of the seven rivers. The carbon constituents within the sediment carbon reservoir exhibited a positive correlation with dissolved CH4 and CO2, with a notable emphasis on humic acid and dissolved CH4 (R2 = 0.86). The elevated concentration of DOM, coupled with its intricate composition, contributed to the increases in dissolved greenhouse gases (GHGs). Experiments showed that the mixing of multi-source DOM can accelerate the organic carbon mineralization processes. The unit carbon emission efficiency was highest in the mixed group, reaching reached 160.9 μmol∙Cg-1, which also exhibited a significantly different carbon pool. The mixed decomposition of DOM from different sources influenced the roles of the lake carbon pool as source and sink, indicating that the multi-source DOM of this lake basin was a potential driving factor for increased carbon emissions. These findings have improved our understanding of the sources and compositions of DOM in lake basins and revealed their impacts on carbon emissions, thereby providing a theoretical basis for improving assessments of lake carbon emissions.
Collapse
Affiliation(s)
- Jie Ma
- Ministry of Ecology and Environment, Nanjing Institute of Environment Sciences, Nanjing, 210042, China
| | - Muchun Zhou
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Yu Peng
- Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Ya Tuo
- Environmental Development Center of the Ministry of Ecology and Environment, Beijing, 100029, China
| | - Chuanqiao Zhou
- Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan.
| | - Kexin Liu
- Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Yilin Huang
- Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Fei He
- Ministry of Ecology and Environment, Nanjing Institute of Environment Sciences, Nanjing, 210042, China.
| | - Qiuying Lai
- Ministry of Ecology and Environment, Nanjing Institute of Environment Sciences, Nanjing, 210042, China
| | - Zhihui Zhang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Tsuyoshi Kinouchi
- Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Shuyin Li
- Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan; Yangtze River Basin Ecological Environment Monitoring and Scientific Research Center, Yangtze River Basin Ecological Environment Supervision and Administration Bureau, Ministry of Ecological Environment, Wuhan, 430010, China
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaodong Wu
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, 435002, China
| | - Xiaowen Lin
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, 435002, China
| | - Weixin Li
- Ministry of Ecology and Environment, Nanjing Institute of Environment Sciences, Nanjing, 210042, China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
8
|
Li Z, Ma H, Hong Z, Zhang T, Cao M, Cui F, Grossart HP. Phytoplankton interspecific interactions modified by symbiotic fungi and bacterial metabolites under environmentally relevant hydrogen peroxide concentrations stress. WATER RESEARCH 2023; 246:120739. [PMID: 37844340 DOI: 10.1016/j.watres.2023.120739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Hydrogen peroxide (H2O2), which accumulates in water and triggers oxidative stress for aquatic microbes, has been shown to have profound impacts on planktonic microbial community dynamics including cyanobacterial bloom formation. Yet, potential effects of H2O2 on interspecific relationships of phytoplankton-microbe symbiotic interactions remain unclear. Here, we investigated effects of environmentally relevant H2O2 concentrations on interspecific microbial relationships in algae-microbe symbiosis. Microbes play a crucial role in the competition between M. aeruginosa and Chlorella vulgaris at low H2O2 concentrations (∼400 nM), in which fungi and bacteria protect Microcystis aeruginosa from oxidative stress. Moreover, H2O2 stimulated the synthesis and release of extracellular microcystin-LR from Microcystis aeruginosa, while intracellular microcystin-LR concentrations remained at a relatively constant level. In the presence of H2O2, loss of organoheterocyclic compounds, organic acids and ketones contributed to the growth of M. aeruginosa, but the reduction of vitamins inhibited it. Regulation of interspecific relationships by H2O2 is achieved by its action on fungal species and bacterial secretory metabolites. This study explored the response of phytoplankton interspecific relationships in symbiotic phytoplankton-microbe interactions to environmentally relevant H2O2 concentrations stress, providing a theoretical basis for understanding the formation of harmful-algae blooming and impact of photochemical properties of water on aquatic ecological safety and stability.
Collapse
Affiliation(s)
- Zhe Li
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Hua Ma
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Zhicheng Hong
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Ting Zhang
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Mingxing Cao
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Fuyi Cui
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Hans-Peter Grossart
- Plankton and Microbial Ecology, Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhuette 2, Neuglobsow 16775, Germany; Institute of Biochemistry and Biology, Potsdam University, Maulbeerallee 2, Potsdam 14469, Germany
| |
Collapse
|