1
|
Guo XM, Lu XM, Jia JW, Xing DF, Li YF, Cao GL, Zhang ZF. Comprehensive assessment of 45 antibiotics in ten urban wastewater treatment plants in Northeastern China: Terminal treatment is not a reliable guard. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137755. [PMID: 40015045 DOI: 10.1016/j.jhazmat.2025.137755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
The increasing presence of antibiotics in urban wastewater has raised significant concerns. Therefore, wastewater treatment plants (WWTPs) face questions about their ability to reliably and effectively remove antibiotics. In this study, data from ten representative WWTPs were systematically evaluated to assess antibiotic occurrence, removal efficiencies, seasonal variations, and ecological risks, revealing the prevalent instability in antibiotic removal capacities of traditional WWTPs. The results showed that the total influent concentrations ranged from 9351.63 to 50126.08 ng/L, with the primary contributors being Norfloxacin (NOR), Ofloxacin (OFX) and Ciprofloxacin (CIP), accounting for 57.63, 18.09 and 9.01 %, respectively. Antibiotic concentrations were significantly higher in winter compared to summer, with winter loads of macrolides, sulfonamides and quinolones exceeding summer levels by 74.09, 86.11 and 38.22 %, respectively. Certain antibiotics, such as Clindamycin hydrochloride (CLH), Roxithromycin (ROX) and Lomefloxacin (LOF), exhibited significant fluctuations. The removal rates of sulfonamides showed a notable decline in winter. Antibiotic emissions from different WWTPs ranged from 20.75 to 284.66 g/day, with Clarithromycin (CLA), Erythromycin (ERY) and OFX being the primary contributors. Additionally, different biological treatment processes do not lead to consistent or predictable variations in antibiotic removal efficiency within WWTPs. More importantly, the study highlighted the current lack of predictive methods for such fluctuations. Correlation analysis between operational parameters and removal rates revealed weak relationships.
Collapse
Affiliation(s)
- Xin-Ming Guo
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
| | - Xi-Mei Lu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
| | - Jing-Wen Jia
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
| | - De-Feng Xing
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; IJRC-PTS-NA, Toronto M2N 6×9, Canada
| | - Guang-Li Cao
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China.
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
2
|
Li S, Miao J, Wang P, Li Y. The screening of priority pollutants in the Bohai Sea based on ecological risk assessment. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106921. [PMID: 39721558 DOI: 10.1016/j.marenvres.2024.106921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/28/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
The Bohai Sea (BS) is a semi-enclosed inland sea and China's most polluted coastal sea. With the rapid economic development of the circum-Bohai Sea region, large amounts of pollutants have been discharged into the BS, posing a significant threat to human health and the ecosystem. Great efforts have been made on investigating the levels of various pollutants in the BS; however, the priority pollutants which are required for the implementation of suitable environmental management and remediation measures in this system remain unclear. By using the risk quotient method, this study evaluated the ecological risks of various pollutants (including antibiotics, heavy metals, total petroleum hydrocarbons (TPHs), endocrine disruptors, pesticides, and persistent organic pollutants) in BS water and sediments over the past twelve years to identify the priority pollutants in this system. The results showed that 8 and 10 pollutants were at risk in BS water and sediments, respectively. Overall, 13 pollutants (arsenic (As), copper (Cu), mercury (Hg), nickel (Ni), chromium (Cr), lead (Pb), zinc (Zn), cadmium (Cd), TPHs, bisphenol A (BPA), erythromycin, polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs)) in the BS were identified to have potential risks and should be included in the list of priority pollutants. The monitoring of the changes in the contents of these pollutants in BS water and sediments needs to be strengthened in the future.
Collapse
Affiliation(s)
- Shang Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Ping Wang
- Qingdao University, Qingdao, 266061, China
| | - Yanbin Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
3
|
Zhao J, Guo C, Yang Q, Liu W, Zhang H, Luo Y, Zhang Y, Wang L, Chen C, Xu J. Comprehensive monitoring and prioritizing for contaminants of emerging concern in the Upper Yangtze River, China: An integrated approach. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135835. [PMID: 39276734 DOI: 10.1016/j.jhazmat.2024.135835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
Contaminants of emerging concern (CECs) in aquatic environments can adversely impact ecosystems and human health even at low concentrations. This study assessed the risk of 162 CECs, including neonicotinoid pesticides, triazine pesticides, carbamate pesticides, psychoactive substances, organophosphate esters, antidepressants, per- and polyfluoroalkyl substances, and antibiotics in 10 drinking water sources and two tributaries (Jialing and Wujiang Rivers) of the Upper Yangtze River in Chongqing, China. Target screening detected 156 CECs at 0.01-2218.2 ng/L, while suspect screening via LC-QTOF-MS identified 64 CECs, with 13 pesticides, 29 pharmaceuticals and personal care products, and 2 industrial chemicals reported for the first time in the Yangtze River Basin. Risk quotient-based ecological risk assessment revealed that 48 CECs posed medium to high risks (RQ > 0.1) to aquatic life, with antibiotics (n = 20) as the main contributors. Non-carcinogenic risks were below negligible levels, but carcinogenic risks from neonicotinoids, triazines, antidepressants, and antibiotics were concerning. A multi-criteria prioritization approach integrating occurrence, physico-chemical properties, and toxicological data ranked 26 CECs as high priority. This study underscores the importance of comprehensive CEC screening in rivers and provides insights for future monitoring and management strategies.
Collapse
Affiliation(s)
- Jianglu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Queping Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; National Joint Research Center for Yangtze River Conservation, Beijing 100012, China
| | - Weiling Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; National Joint Research Center for Yangtze River Conservation, Beijing 100012, China
| | - Heng Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ying Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lei Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Chao Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
4
|
Chen C, Tang J, Li F, Xue R, Xiao Y, Chen L, Yu G. Characterization and source apportionment of pharmaceuticals in surface water of the Yangtze Estuary and adjacent sea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52171-52180. [PMID: 39141263 DOI: 10.1007/s11356-024-34693-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Pharmaceuticals, which are closely linked to human activities, have attracted global attention. This study investigated the occurrence characteristics of 20 pharmaceuticals in surface water of the Yangtze Estuary and adjacent sea. A total of 14 targeted pharmaceuticals were detected in both spring and summer sampling campaigns. The mean concentrations of sulfonamides and non-sulfonamides were 36.60 ± 19.43 ng·L-1 and 50.02 ± 41.07 ng·L-1, respectively. As for non-antibiotics, their concentrations were in the range of 24.34 ± 916.8 ng·L-1 with caffeine accounting for 6.17 ~ 86.70% (average percentage of 42.22%). Meanwhile, spatial distribution patterns showed similarities between antibiotics and non-antibiotics, with high levels occurring near the upper estuary, aquaculture areas, wastewater treatment plants, and the maximum turbidity zone. This phenomenon could be related to the sources of pharmaceuticals and the physicochemical properties of water bodies. Obviously, the first three areas are highly impacted by human activities or serve as important sources of terrestrial contaminants entering the East China Sea. The last area retains high amounts of suspended particles which may exert strong trapping effects on hydrophobic chemicals. Principal component analysis revealed the presence of three potential sources for pharmaceuticals in the Yangtze Estuary, with a relatively high percentage originating from incompletely treated municipal sewage. As for the temporal trend, pharmaceutical contamination was found to be higher in spring compared to summer, potentially due to variations in pharmaceutical consumption patterns, local rainfalls, and water temperatures. These findings provide fundamental data support for implementing appropriate local management strategies for pharmaceutical usages.
Collapse
Affiliation(s)
- Chunzhao Chen
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, 519087, China
| | - Jian Tang
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, 519087, China
| | - Fei Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, New Jersey, NJ, USA
| | - Rui Xue
- Institute of Science and Technology Information, Beijing Academy of Science and Technology, Beijing, 100089, China.
| | - Yihua Xiao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Gang Yu
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, 519087, China
| |
Collapse
|
5
|
Zhang Y, Huang G, Zhang Q, Bi X, Chu H, Liu Z, Luo J, Bai S, Mo S, Wang H, Fu M. Occurrence, distribution, and ecological risk assessment of pharmaceuticals and personal care products in the surface water of Lipu River, China. ENVIRONMENTAL RESEARCH 2024; 252:118908. [PMID: 38614197 DOI: 10.1016/j.envres.2024.118908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Pharmaceuticals and Personal Care Products (PPCPs) are inadvertently released into the aquatic environment, causing detrimental effects on aquatic ecosystem. There is an urgent need of an in-deep investigation on contamination information of PPCPs in aquatic environment as well as the ecological risks to the aquatic ecosystem. This study was carried out in Lipu River basin, China, to investigate the distribution pattern and ecological risks of PPCPs. Results showed that PPCPs pollution is ubiquitous, 29 out of 30 targeted PPCPs were detected in Lipu River. Fourteen PPCPs were detected with a frequency of 100% in all water samples, and ten PPCPs were detected with a frequency of more than 80%. The cumulated PPCPs concentrations ranged from 33.30 ng/L to 99.60 ng/L, with a median value of 47.20 ng/L in Lipu River. Caffeine, flumequine, nifedipine, and lomefloxacin were the predominant PPCPs in study area. Caffeine showed high ecological risk, five and seven individual PPCP showed medium and low ecological risk to algae.
Collapse
Affiliation(s)
- Yanan Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
| | - Guibin Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Qin Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Xiaoqian Bi
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Hang Chu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Zixuan Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Jun Luo
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Shaoyuan Bai
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Shengpeng Mo
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Hui Wang
- Hengsheng Water Environment Treatment Co., Ltd., Guilin, 541100, China
| | - Mingming Fu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
6
|
Chu B, Lou Y, Tan Y, Lin J, Liu X. Nitrogen-doped mesoporous activated carbon from Lentinus edodes residue: an optimized adsorbent for pharmaceuticals in aqueous solutions. Front Chem 2024; 12:1419287. [PMID: 38966860 PMCID: PMC11222600 DOI: 10.3389/fchem.2024.1419287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
In this study, phosphoric acid activation was employed to synthesize nitrogen-doped mesoporous activated carbon (designated as MR1) from Lentinus edodes (shiitake mushroom) residue, while aiming to efficiently remove acetaminophen (APAP), carbamazepine (CBZ), and metronidazole (MNZ) from aqueous solutions. We characterized the physicochemical properties of the produced adsorbents using scanning electron microscopy (SEM), nitrogen adsorption isotherms, and X-ray photoelectron spectroscopy (XPS). MR1, MR2, and MR3 were prepared using phosphoric acid impregnation ratios of 1, 2, and 3 mL/g, respectively. Notably, MR1 exhibited a significant mesoporous structure with a volume of 0.825 cm3/g and a quaternary nitrogen content of 2.6%. This endowed MR1 with a high adsorption capacity for APAP, CBZ, and MNZ, positioning it as a promising candidate for water purification applications. The adsorption behavior of the contaminants followed the Freundlich isotherm model, suggesting a multilayer adsorption process. Notably, MR1 showed excellent durability and recyclability, maintaining 95% of its initial adsorption efficiency after five regeneration cycles and indicating its potential for sustainable use in water treatment processes.
Collapse
Affiliation(s)
- Bei Chu
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Cixi, China
| | | | | | | | | |
Collapse
|
7
|
Zhang X, Xu S, Liu Z, Xu Z, Shen Q, Tang S, Liu Z, Si X. Flexible molecularly imprinted fiber library for the metabolic analysis of bisphenol F and ecological risk evaluation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133300. [PMID: 38141296 DOI: 10.1016/j.jhazmat.2023.133300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/01/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
Bisphenol F (BPF) has evoked global attentions due to its ubiquity and detrimental effects. Herein, a flexible molecularly imprinted fiber library was firstly proposed for the metabolic analysis of BPF in aquatic ecosystems. The library includes flexible single fibers and fiber arrays to precisely identify BPF and its metabolites with a wide range of polarities. Compared to commercial polyacrylate, the performance increased 11.56-570.98-fold. The adsorption capacity and the LogKow value were positively related. These arrays were used for the acquisition of environmental metabolomics data from aquatic ecosystems. In-depth data analysis showed that risk quotient was lower than 0.76, and bioaccumulation factor was lower than 2000 L/kg. Distribution concentration of BPF and its metabolites changed seasonally, and accumulation in sediment was much larger than that in surface water and hydrobionts. The risk is gradually increasing in sediment, but it does not reach high risk. The likelihood of bioaccumulation of parent compounds was greater than its metabolites. The library can be used in the metabolic diagnosis of pollutants with a broad range of polarities, providing a new method to acquire data for further ecological risk assessment, and offering a revolutionary strategy for environmental metabolomics investigation in aquatic ecosystems.
Collapse
Affiliation(s)
- Xiaolan Zhang
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Shufang Xu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhimin Liu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhigang Xu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China.
| | - Qinpeng Shen
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming 650231, China
| | - Shiyun Tang
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming 650231, China
| | - Zhihua Liu
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming 650231, China
| | - Xiaoxi Si
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming 650231, China; Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
8
|
Adenaya A, Quintero RR, Brinkhoff T, Lara-Martín PA, Wurl O, Ribas-Ribas M. Vertical distribution and risk assessment of pharmaceuticals and other micropollutants in southern North Sea coastal waters. MARINE POLLUTION BULLETIN 2024; 200:116099. [PMID: 38309177 DOI: 10.1016/j.marpolbul.2024.116099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/27/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Pharmaceutical compounds are micropollutants of emerging concern, as well as other classes of chemicals such as UV filters and artificial sweeteners. They enter marine environments via wastewater treatment plants, aquaculture runoff, hospital effluents, and shipping activities. While many studies have investigated the presence and distribution of these pollutants in numerous coastal areas, our study is the first to focus on their occurrence, spatial distribution, and vertical distribution in the sea surface microlayer (SML) and the near-surface layer of marine environments. We analyzed 62 pharmaceutical compounds, one UV filter, and six artificial sweeteners from the SML to the corresponding underlying water (0 cm, 20 cm, 50 cm, 100 cm, and 150 cm) at four stations in the southern North Sea. One station is the enclosed Jade Bay, one is the Weser estuary at Bremerhaven, and the other two stations (NS_7 and NS_8) are in the open German Bight. Jade Bay receives pollutants from surrounding wastewater treatment plants, while the Weser estuary receives pollutants from cities like Bremerhaven, which has dense populations and industrial activities. Concentrations of pharmaceutical compounds were higher in the upper water layers (from the SML to 20 cm). Eleven pharmaceutical compounds (caffeine, carbamazepine, gemfibrozil, ibuprofen, metoprolol, salicylic acid, clarithromycin, novobiocin, clindamycin, trimethoprim, and tylosin) were detected in >95 % of our samples. One UV filter (benzophenone-4) was found in 83 % and three artificial sweeteners (acesulfame, saccharin, and sucralose) in 100 % of all our samples. All artificial sweeteners posed high risks to the freshwater invertebrate Daphnia magna. Understanding the spatial and vertical distribution of pharmaceuticals and other micropollutants in marine environments may be essential in assessing their dispersal and detection in other aquatic environments.
Collapse
Affiliation(s)
- Adenike Adenaya
- Center for Marine Sensors (ZfMarS), Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany; Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany.
| | - Ruben Rios Quintero
- Physical Chemistry Department, Faculty of Marine and Environmental Sciences, University of Cádiz, CEI·MAR, Cádiz 11510, Spain
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany
| | - Pablo A Lara-Martín
- Physical Chemistry Department, Faculty of Marine and Environmental Sciences, University of Cádiz, CEI·MAR, Cádiz 11510, Spain
| | - Oliver Wurl
- Center for Marine Sensors (ZfMarS), Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
| | - Mariana Ribas-Ribas
- Center for Marine Sensors (ZfMarS), Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
| |
Collapse
|
9
|
Chen H, Jiang J, Tang J, Xu L, Deng W, Ye K, Zeng D, Luo Y. Legacy and emerging per- and polyfluoroalkyl substances in the Shuidong bay of South China: Occurrence, partitioning behavior, and ecological risks. CHEMOSPHERE 2024; 350:141106. [PMID: 38171402 DOI: 10.1016/j.chemosphere.2023.141106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/29/2023] [Accepted: 12/31/2023] [Indexed: 01/05/2024]
Abstract
With the phase-out of legacy per- and polyfluoroalkyl substances (PFASs), PFAS alternatives have been increasingly used in industrial production and daily life. However, available information on the occurrence of PFASs and PFAS alternatives in semi-enclosed bays remains limited. As a representative semi-enclosed bay in Guangdong Province, China, Shuidong Bay has experienced severe anthropogenic pollution (industrial, shipping, cultural, and domestic) in recent decades. Water pollution in Shuidong Bay has worsened, and PFASs have been identified as ubiquitous environmental pollutants in this bay. In this study, 23 PFASs, including 5 emerging PFASs, were analyzed in water, suspended particulate matter (SPM), and sediment samples collected from Shuidong Bay. We determined that perfluorobutanoic acid (PFBA) was the predominant PFAS compound in seawater, whereas 6:2 fluorotelomer sulfonic acid (FTS) and perfluorooctane sulfonamide acetate (FOSAA) were dominant in SPM and sediment, respectively. The sediment-water partitioning coefficients were greatly dependent on the perfluorinated carbon chain length. Chlorophyll a concentration had a significant effect on the dissolved concentrations of PFASs in seawater. The ecological risk assessment indicated that the PFASs detected in the seawater and sediment samples posed no considerable risks to aquatic organisms. This study provides a valuable reference for evaluating PFAS contamination in Shuidong Bay and conducting ecological risk assessments for aquatic organisms.
Collapse
Affiliation(s)
- Hui Chen
- Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China
| | - Jingyuan Jiang
- Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China
| | - Junyi Tang
- Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China
| | - Lijia Xu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, China
| | - Weihua Deng
- Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China
| | - Kuangmin Ye
- Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China
| | - Danna Zeng
- Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China
| | - Yuchi Luo
- Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China.
| |
Collapse
|
10
|
Wang X, Wang J, Niu Z. Modelling based study on the occurrence characteristics and influencing factors of the typical antibiotics in Bohai Bay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167853. [PMID: 37844646 DOI: 10.1016/j.scitotenv.2023.167853] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/27/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Previous studies have demonstrated that antibiotics have the potential impacts to ecosystems and human health. However, due to their various classes and distinct characteristics, creating comprehensive, integrated and dynamic simulations has proven to be a challenging task. In this study, a 3D hydrodynamic-contaminant model was developed to gain a better understanding of the transportation and prevalence of antibiotics in the Bohai Bay. Specifically, we focused on four types of antibiotics as examples. To accurately capture the dynamic distribution of antibiotics, both transport and biochemical processes were taken into account. Based on this model, the antibiotics' spatial and temporal distribution was examined, the potential impact of the future antibiotics consumption and climate change was also analyzed. The study found that human activity has a greater impact on the presence of antibiotics in Bohai Bay than temperature rise. Based on the current consumption rate, the total amount of antibiotics in Bohai Bay may increase by 10 ng/L and affect nearly one third of the study area within the next 20-30 years. The significant impact of human activity on water contamination in coastal areas may also have implications for other coastal regions. This finding can provide a valuable framework for pollution prevention and control.
Collapse
Affiliation(s)
- Xuan Wang
- Key Laboratory of Ocean Observation Technology of Ministry of Natural Resources, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Jinxin Wang
- Key Laboratory of Ocean Observation Technology of Ministry of Natural Resources, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| | - Zhiguang Niu
- Key Laboratory of Ocean Observation Technology of Ministry of Natural Resources, School of Marine Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
11
|
Jiang S, Wan M, Lin K, Chen Y, Wang R, Tan L, Wang J. Spatiotemporal distribution, source analysis and ecological risk assessment of polychlorinated biphenyls (PCBs) in the Bohai Bay, China. MARINE POLLUTION BULLETIN 2024; 198:115780. [PMID: 38006871 DOI: 10.1016/j.marpolbul.2023.115780] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 11/27/2023]
Abstract
As a class of persistent organic pollutants (POPs), the spatial and temporal distribution of polychlorinated biphenyls (PCBs) in seawater is important for environmental assessment. Surface water samples were collected from 35 stations during summer and 36 stations during autumn of 2020 in the Bohai Bay. The concentration, composition, distribution and sources of PCBs were analyzed to assess the ecological impact of PCBs. The average concentration of ∑18PCBs was 124.6 ng/L (range of 28.1-445.5 ng/L) in summer and 122.8 ng/L (range of 21.0-581.4 ng/L) in autumn. PCBs in surface seawater of the Bohai Bay showed high near-shore and low far-shore characteristics, indicating the serious influence of land-based sources such as port activities and river inputs. Proportion analysis showed that Tetra-PCBs and Penta-PCBs were the major constituents in most stations. It was assessed as moderate and high risk (MRQ > 0.1) by mixture risk quotient (MRQ) and concentration addition (CA) model in surface seawater of the Bohai Bay. Principal component analysis (PCA) was used to explain the sources of PCBs in the Bohai Bay. PCBs in the Bohai Bay may come from commercial PCBs and their incineration products, municipal landfills, wood and coal combustion, and industrial activities, etc.
Collapse
Affiliation(s)
- Shan Jiang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Mengmeng Wan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Kun Lin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yanshan Chen
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Rui Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Battery Technology Company, Wanhua Chemical Group Co., Ltd. Yantai 265503, China
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
12
|
Liu R, Wang Y, Wang L, Wang Y, Peng X, Cao L, Liu Y. Spatio-temporal distribution and source identification of antibiotics in suspended matter in the Fen River Basin. CHEMOSPHERE 2023; 345:140497. [PMID: 37866500 DOI: 10.1016/j.chemosphere.2023.140497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
In this study, 26 typical antibiotics in the suspended matter of the Fen River basin were analyzed during the wet and dry seasons, and the main sources of antibiotic contamination were further identified. The results showed that the concentrations of antibiotics in the suspended matter varied seasonally. Sixteen antibiotics were detected in the suspended matter during the wet season with an average concentration of 463.56 ng/L. However, a total of 21 antibiotics were detected in the dry season, with an average concentration of 106.00 ng/L. The concentration of chloramphenicol antibiotics was outstanding in the wet season and dry season. The spatial distribution of the antibiotics in suspended matter showed little spatial discrepancy during the wet season. During the dry season, nevertheless, the concentration was higher upstream than midstream and downstream. The main sources of antibiotics in the Fen River Basin were livestock and poultry breeding, wastewater from wastewater treatment plants (WWTPs), agricultural drainage, domestic sewage, and pharmaceutical wastewater. Wastewater from WWTPs and domestic sewage were identified as two primary sources in the suspended matter during the wet season, with wastewater from WWTPs contributing the most accounting for 37%. While the most significant source of antibiotics in the suspended matter in the dry season was pharmaceutical wastewater, accounting for 36%. In addition, the contribution proportion of sources for antibiotics exhibited discrepant spatial distribution characteristics. In the wet season, wastewater from WWTPs dominated in the upstream and midstream, and livestock and poultry breeding was prominent in the midstream and downstream. Pharmaceutical wastewater was the main source in the midstream and downstream regions during the dry season.
Collapse
Affiliation(s)
- Ruimin Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China.
| | - Yunan Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China.
| | - Linfang Wang
- Sorghum Research Institute, Shanxi Agricultural University/Shanxi Academy of Agricultural Sciences, No.238, Yuhuaxi Street, Jinzhong, 030600, China.
| | - Yifan Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China.
| | - Xinyuan Peng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China.
| | - Leiping Cao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China.
| | - Yue Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China.
| |
Collapse
|
13
|
Ngubane Z, Dzwairo B, Moodley B, Stenström TA, Sokolova E. Quantitative assessment of human health risks from chemical pollution in the uMsunduzi River, South Africa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118013-118024. [PMID: 37874515 PMCID: PMC10682212 DOI: 10.1007/s11356-023-30534-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023]
Abstract
A quantitative chemical risk assessment was performed using published data as well as data from the official monitoring programme for the uMsunduzi River in KwaZulu-Natal, South Africa. The chemicals assessed were organochlorinated pesticides (OCPs), pharmaceuticals and personal care products (PPCPs), heavy metals, and nitrates and phosphates. The water from uMsunduzi River is used locally without treatment. Consequently, the exposure routes investigated were via ingestion during domestic drinking and incidental ingestion during recreational activities, which were swimming and non-competitive canoeing, for both adults and children. For the individual chemicals, non-carcinogenic risks using the hazard quotient (HQ) and carcinogenic risks using the cancer risk (CR) were quantified. It was found that the exposed population is likely to experience non-carcinogenic effects from pesticides and phosphates, but not from PPCPs, heavy metals and nitrates. This study also found that the carcinogenic risks for OCPs were higher than the tolerable limit of 10-5, while for lead the risk was below the tolerable limit. Some of the activities that potentially contribute to chemicals onto the uMsunduzi River are subsistence farming, small plantations, illegal dumping, industries, and broken sewers. The findings of this study may act as the technical foundation for the introduction of pollution reduction measures within the catchment, including public education.
Collapse
Affiliation(s)
- Zesizwe Ngubane
- Department of Civil Engineering, Midlands, Durban University of Technology, Pietermaritzburg, South Africa
| | - Bloodless Dzwairo
- Department of Civil Engineering, Midlands, Durban University of Technology, Pietermaritzburg, South Africa
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Brenda Moodley
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Thor Axel Stenström
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | | |
Collapse
|