1
|
Mazzoli E, Parashar A, D'Odorico P, Branca G. Greening the city: A holistic assessment of waste management alternatives in India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176894. [PMID: 39427902 DOI: 10.1016/j.scitotenv.2024.176894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/17/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
Waste is one of the major urban challenges faced globally today, and the severity of the challenge is further exacerbated by rapid urbanisation, growing populations and increasing per capita waste generation. As one of the largest urban agglomerations in the world, Delhi collects 11,352 t of waste every day. Without adequate segregation, most of this waste is sent to dumpsites and waste-to-energy plants, often associated with significant capital costs and environmental externalities. This paper conducts a life cycle assessment of the current waste management system and a comparative analysis with a suggested alternative scenario, where the share of recyclables and compostables going to landfills and waste-to-energy plants is reduced through adequate segregation. Our results revealed that landfills and waste-to-energy plants are associated with significant adverse environmental impacts such as climate change, soil and water acidification, freshwater eutrophication, human toxicity, and respiratory health. In comparison, compost plants showed negligible emissions per tonne of waste. The alternative scenario (i.e. reduce waste to landfill through adequate segregation) can help reduce the negative impact on all environmental indicators by an average of 23 %. We posit that the prevailing narrative of addressing the waste issue through waste-to-energy plants in Delhi goes against the country's climate neutrality targets. Instead, the circular economy approach offers simpler, faster, and more cost-effective solutions that policymakers should consider to reduce the financial and environmental load of the current and future waste management issue.
Collapse
Affiliation(s)
- Enrico Mazzoli
- Economy, Engineering, Society and Business Department, University of Tuscia, Viterbo, Italy; Environmental Biology Department, Sapienza University of Rome, Italy.
| | | | - Paolo D'Odorico
- Department of Environmental Science, Policy, & Management, University of California, Berkeley, CA, USA
| | - Giacomo Branca
- Economy, Engineering, Society and Business Department, University of Tuscia, Viterbo, Italy
| |
Collapse
|
2
|
Yang S, Hou Q, Zhu M, Liu Y, Li S. Innovative biogas energy system: Enhancing efficiency and sustainability through multigeneration integration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123118. [PMID: 39509977 DOI: 10.1016/j.jenvman.2024.123118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024]
Abstract
This research suggests using landfill gas, derived from landfilling operations, as a feasible alternative to fossil fuels. This study introduces a novel and all-encompassing method for utilizing landfill biogas. The proposed system utilizes a supercritical Brayton cycle with carbon dioxide as the working fluid, a transcritical CO2 cycle, two ammonia Rankine cycles, a single-effect desalination cycle, a proton exchange membrane electrolyzer, and an improved Kalina cycle. The system underwent evaluation using Aspen HYSYS software, enabling assessments in terms of energy, exergy, thermo-economic, and environmental variables. The examination of the findings indicates that the suggested solution has much higher energy efficiency compared to similar studies. The assessments determined the energy efficiency of the process in power generation, combined heat and power, combined cooling, heat and power, and multigeneration modes to be 23.62 %, 80.89%, 81.19%, and 82.72%, respectively. Furthermore, environmental research has revealed that the new process emits a total of 1743 kg/h of carbon dioxide and has an emission rate of 0.23 kg/kWh. The exergy analysis indicated that the fuel burner exhibited the greatest degree of irreversibility, accounting for 40%. Furthermore, a sensitivity analysis was performed on crucial parameters, including the temperature of the heat source in the single-effect desalination section and the rate at which water flows into the electrolyzer. The objective was to evaluate the influence of changes in these parameters on energy efficiency, exergy efficiency, carbon dioxide emission intensity, product production rate, and levelized energy cost. The economic analysis determined that the proposed scheme would have a total annual cost of 8,667,124 $ with a levelized energy cost of 0.17 $/kWh.
Collapse
Affiliation(s)
- Shifang Yang
- Department of Electrical Engineering, North China Electric Power University, Baoding, Hebei Province, 071000, China.
| | - Qianpeng Hou
- Department of Electrical Engineering, North China Electric Power University, Baoding, Hebei Province, 071000, China
| | - Mingxi Zhu
- State Grid Shaanxi Electric Power Research Institute, Xi'an, Shaanxi Province, 710099, China
| | - Yunpeng Liu
- Department of Electrical Engineering, North China Electric Power University, Baoding, Hebei Province, 071000, China
| | - Shinichi Li
- School of Mechanical Engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
3
|
Hasan MM, Ng KTW, Ray S, Assuah A, Mahmud TS. Prophet time series modeling of waste disposal rates in four North American cities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31343-31354. [PMID: 38632194 DOI: 10.1007/s11356-024-33335-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
In this study, three different univariate municipal solid waste (MSW) disposal rate forecast models (SARIMA, Holt-Winters, Prophet) were examined using different testing periods in four North American cities with different socioeconomic conditions. A review of the literature suggests that the selected models are able to handle seasonality in a time series; however, their ability to handle outliers is not well understood. The Prophet model generally outperformed the Holt-Winters model and the SARIMA model. The MAPE and R2 of the Prophet model during pre-COVID-19 were 4.3-22.2% and 0.71-0.93, respectively. All three models showed satisfactory predictive results, especially during the pre-COVID-19 testing period. COVID-19 lockdowns and the associated regulatory measures appear to have affected MSW disposal behaviors, and all the univariate models failed to fully capture the abrupt changes in waste disposal behaviors. Modeling errors were largely attributed to data noise in seasonality and the unprecedented event of COVID-19 lockdowns. Overall, the modeling errors of the Prophet model were evenly distributed, with minimum modeling biases. The Prophet model also appeared to be versatile and successfully captured MSW disposal rates from 3000 to 39,000 tons/month. The study highlights the potential benefits of the use of univariate models in waste forecast.
Collapse
Affiliation(s)
- Mohammad Mehedi Hasan
- Faculty of Engineering and Applied Science, Environmental Systems Engineering, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, S4S 0A2, Canada
| | - Kelvin Tsun Wai Ng
- Faculty of Engineering and Applied Science, Environmental Systems Engineering, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, S4S 0A2, Canada.
| | - Sagar Ray
- Faculty of Engineering and Applied Science, Environmental Systems Engineering, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, S4S 0A2, Canada
| | - Anderson Assuah
- University College of the North, Box 3000, 436 - 7th Street East, The Pas, Manitoba, R9A 1M7, Canada
| | - Tanvir Shahrier Mahmud
- Faculty of Engineering and Applied Science, Environmental Systems Engineering, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, S4S 0A2, Canada
| |
Collapse
|
4
|
He M, Wu F, Qu G, Liu X. Harmless and resourceful utilization of solid waste: Multi physical field regulation in the microbiological treatment process of solid waste treatment. ENVIRONMENTAL RESEARCH 2023; 238:117149. [PMID: 37716393 DOI: 10.1016/j.envres.2023.117149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/29/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Solid waste (SW) treatment methods mainly include physical, chemical, and biological methods, while physical and chemical methods have advantages such as fast effectiveness and short treatment time, but have high costs and were prone to secondary pollution. Due to the advantages of mild conditions and environmental protection, microbial methods have attracted the attention of numerous researchers. Recently, promotion of biological metabolic activity in biotreatment technology by applying multiple physical conditions, and reducing the biochemical reaction energy base to promote the transfer of protons and electrons, has made significant progress in harmless and resourceful utilization of SW. This paper main summarized the harmless and resourceful treatment methods of common bulk SW. The research of physical field-enhanced microbial treatment of inorganic solid waste (ISW) and organic solid waste (OSW) was discussed. The advantages and mechanisms of microbial treatment compared to traditional SW treatment methods were analyzed. The multi-physical field coupling enhanced microbial treatment technology was proposed to further improving the efficiency of large-scale treatment of bulk SW. The application prospects and potential opportunities of this technology were analyzed. Novel research ideas for the large-scale harmless and resourceful treatment of bulk SW were provided.
Collapse
Affiliation(s)
- Minjie He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, Yunnan, China; National-Regional Engineering Research Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| | - Fenghui Wu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, Yunnan, China; National-Regional Engineering Research Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| | - Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, Yunnan, China; National-Regional Engineering Research Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China.
| | - Xinxin Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan, Kunming, 650500, Yunnan, China; National-Regional Engineering Research Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, Yunnan, China
| |
Collapse
|