1
|
Meher AK, Zarouri A. Environmental Applications of Mass Spectrometry for Emerging Contaminants. Molecules 2025; 30:364. [PMID: 39860232 PMCID: PMC11767766 DOI: 10.3390/molecules30020364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/11/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Emerging contaminants (ECs), encompassing pharmaceuticals, personal care products, pesticides, and industrial chemicals, represent a growing threat to ecosystems and human health due to their persistence, bioaccumulation potential, and often-unknown toxicological profiles. Addressing these challenges necessitates advanced analytical tools capable of detecting and quantifying trace levels of ECs in complex environmental matrices. This review highlights the pivotal role of mass spectrometry (MS) in monitoring ECs, emphasizing its high sensitivity, specificity, and versatility across various techniques such as Gas Chromatography-Mass Spectrometry (GC-MS), Liquid Chromatography-Mass Spectrometry (LC-MS), and High-Resolution Mass Spectrometry (HR-MS). The application of MS has facilitated the real-time detection of volatile organic compounds, the comprehensive non-targeted screening of unknown contaminants, and accurate quantification in diverse matrices including water, soil, and air. Despite its effectiveness, challenges such as matrix interferences, a lack of standardized methodologies, and limited spectral libraries persist. However, recent advancements, including hybrid MS systems and the integration of artificial intelligence (AI), are paving the way for more efficient environmental monitoring and predictive modeling of contaminant behavior. Continued innovation in MS technologies and collaborative efforts are essential to overcome existing challenges and ensure sustainable solutions for mitigating the risks associated with emerging contaminants.
Collapse
Affiliation(s)
- Anil Kumar Meher
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN 55108, USA;
| | | |
Collapse
|
2
|
Kang D, Ahn YY, Moon HB, Kim K, Jeon J. Exploring micropollutants in polar environments based on non-target analysis using LC-HRMS. MARINE POLLUTION BULLETIN 2024; 209:117083. [PMID: 39393234 DOI: 10.1016/j.marpolbul.2024.117083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/31/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024]
Abstract
The routine use of chemicals in polar regions contributes to unexpected occurrence of micropollutants, with sewage discharge as a prominent pollution source. The aim of this study was to identify and quantify micropollutants in polar environments near potential point sources using non-target analysis (NTA) with liquid chromatography high-resolution mass spectrometry. Seawater samples were collected from Ny-Ålesund, Svalbard and Marian Cove, King George Island, in 2023. We tentatively identified 32 compounds with NTA, along with 105 homologous series substances. Of these, 18 substances were confirmed, and 13 were quantified using the internal standard method. Most quantified substances in the Ny-Ålesund, including caffeine, naproxen, and polyethylene glycols (PEGs), exhibited concentrations ranged from 0.9 to 770,000 ng/L. In Marian Cove, the analysis predominantly detected acetaminophen, with concentrations ranging from 13 to 35 ng/L. The findings underscore the presence and spatial distribution of emerging micropollutants resulting from wastewater discharge in polar regions.
Collapse
Affiliation(s)
- Daeho Kang
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnam-do 51140, Republic of Korea
| | - Yong-Yoon Ahn
- Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Sciences and Convergent Technology, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Kitae Kim
- Korea Polar Research Institute (KOPRI), Incheon 21990, Republic of Korea; Department of Polar Science, University of Science of Technology (UST), Incheon 21990, Republic of Korea
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, Changwon, Gyeongsangnam-do 51140, Republic of Korea; School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnam-do 51140, Republic of Korea.
| |
Collapse
|
3
|
Karnaeva AE, Sholokhova AY. Validation of the identification reliability of known and assumed UDMH transformation products using gas chromatographic retention indices and machine learning. CHEMOSPHERE 2024; 362:142679. [PMID: 38909863 DOI: 10.1016/j.chemosphere.2024.142679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Thirty two commercially available standards were used to determine chromatographic retention indices for three different stationary phases (non-polar, polar and mid-polar) commonly used in gas chromatography. The selected compounds were nitrogen-containing heterocycles and amides, which are referred to in the literature as unsymmetrical dimethylhydrazine (UDMH) transformation products or its assumed transformation products. UDMH is a highly toxic compound widely used in the space industry. It is a reactive substance that forms a large number of different compounds in the environment. Well-known transformation products may exceed UDMH itself in their toxicity, but most of the products are poorly investigated, while posing a huge environmental threat. Experimental retention indices for the three stationary phases, retention indices from the NIST database, and predicted retention indices are presented in this paper. It is shown that there are virtually no retention indices for UDMH transformation products in the NIST database. In addition, even among those compounds for which retention indices were known, inconsistencies were identified. Adding retention indices to the database and eliminating erroneous data would allow for more reliable identification when standards are not available. The discrepancies identified between experimental retention index values and predicted values will allow for adjustments to the machine learning models that are used for prediction. Previously proposed compounds as possible transformation products without the use of standards and NMR method were confirmed.
Collapse
Affiliation(s)
- Anastasia E Karnaeva
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia.
| | - Anastasia Yu Sholokhova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
4
|
Motteau S, Deborde M, Gombert B, Karpel Vel Leitner N. Non-target analysis for water characterization: wastewater treatment impact and selection of relevant features. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4154-4173. [PMID: 38097837 DOI: 10.1007/s11356-023-30972-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 11/05/2023] [Indexed: 01/19/2024]
Abstract
Non-target analyses were conducted to characterize and compare the molecular profiles (UHPLC-HRMS fingerprint) of water samples from a wastewater treatment plant (WWTP). Inlet and outlet samples were collected from three campaigns spaced 6 months apart in order to highlight common trends. A significant impact of the treatment on the sample fingerprints was shown, with a 65-70% abatement of the number of features detected in the effluent, and more polar, smaller and less intense molecules found overall compared to those in WWTP influent waters. Multivariate analysis (PCA) associated with variations of the features between inlets and outlets showed that features appearing or increasing were correlated with effluents while those disappearing or decreasing were correlated with influents. Finally, effluent features considered as relevant to a potentially adverse effect on aqueous media (i.e. those which appeared or increased or slightly varied from the influent) were highlighted. Three hundred seventy-five features common with the 3 campaigns were thus selected and further characterized. For most of them, elementary composition was found to be C, H, N, O (42%) and C, H, N, O, P (18%). Considering the MS2 spectra and several reference MS2 databases, annotations were proposed for 35 of these relevant features. They include synthetic products, pharmaceuticals and metabolites.
Collapse
Affiliation(s)
- Solène Motteau
- University of Poitiers, Institut de Chimie Des Milieux Et Des Matériaux de Poitiers (IC2MP UMR CNRS 7285), Equipe Eaux Biomarqueurs Contaminants Organiques Milieux (E.BICOM), 1 Rue Marcel Doré, Bâtiment B1, TSA 41105 86073, Cedex, Poitiers, France
| | - Marie Deborde
- University of Poitiers, Institut de Chimie Des Milieux Et Des Matériaux de Poitiers (IC2MP UMR CNRS 7285), Equipe Eaux Biomarqueurs Contaminants Organiques Milieux (E.BICOM), 1 Rue Marcel Doré, Bâtiment B1, TSA 41105 86073, Cedex, Poitiers, France.
- University of Poitiers, UFR Médecine Et de Pharmacie, 6 Rue de La Milétrie, Bâtiment D1, TSA 51115, 86073, Cedex 9, Poitiers, France.
| | - Bertrand Gombert
- University of Poitiers, Institut de Chimie Des Milieux Et Des Matériaux de Poitiers (IC2MP UMR CNRS 7285), Equipe Eaux Biomarqueurs Contaminants Organiques Milieux (E.BICOM), 1 Rue Marcel Doré, Bâtiment B1, TSA 41105 86073, Cedex, Poitiers, France
| | - Nathalie Karpel Vel Leitner
- University of Poitiers, Institut de Chimie Des Milieux Et Des Matériaux de Poitiers (IC2MP UMR CNRS 7285), Equipe Eaux Biomarqueurs Contaminants Organiques Milieux (E.BICOM), 1 Rue Marcel Doré, Bâtiment B1, TSA 41105 86073, Cedex, Poitiers, France
| |
Collapse
|
5
|
Selwe KP, Sallach JB, Dessent CEH. Nontargeted Screening of Contaminants of Emerging Concern in the Glen Valley Wastewater Treatment Plant, Botswana. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:52-61. [PMID: 37877782 DOI: 10.1002/etc.5775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/08/2023] [Accepted: 10/19/2023] [Indexed: 10/26/2023]
Abstract
There is growing concern about the prevalence and impact of contaminants of emerging concern (CECs). The environmental monitoring of CECs has, however, been limited in low- and middle-income countries due to the lack of advanced analytical instrumentation locally. In the present study we employed a nontargeted and suspect screening workflow via liquid chromatography coupled with high-resolution mass spectrometry (HRMS) to identify known and unknown pollutants in the Glen Valley wastewater treatment plant, Botswana, complemented by analysis of groundwater samples. The present study represents the first HRMS analysis of CECs in water samples obtained in Botswana. Suspect screening of 5942 compounds qualitatively identified 28 compounds, including 26 pharmaceuticals and two illicit drugs (2-ethylmethcathinone and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol). Nontargeted analysis tentatively identified the presence of 34 more compounds including (5ξ)-12,13-dihydroxypodocarpa-8,11,13-trien-7-one, 12-aminododecanoic acid, atenolol acid, brilliant blue, cyclo leucylprolyl, decanophenone, DL-carnitine, N,N'-dicyclohexylurea, N4-acetylsulfamethoxazole, NP-003672, and 24 polyethylene glycol polymers. The highest number of detections were in influent wastewater (26 CECs) followed by effluent wastewater (10 CECs) and, lastly, groundwater (4 CECs). Seventeen CECs detected in the influent water were not detected in the effluent waters, suggesting reduced emissions due to wastewater treatment. Two antiretroviral compounds (abacavir and tenofovir) were detected in the influent and effluent sources. This suggests that wastewater treatment plants are a major pathway of chemical pollution to the environment in Botswana and will help inform prioritization efforts for monitoring and remediation that is protective of these key ecosystems. Environ Toxicol Chem 2024;43:52-61. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Kgato P Selwe
- Department of Chemistry, University of York, Heslington, York, United Kingdom
- Department of Environment and Geography, University of York, Heslington, York, United Kingdom
| | - J Brett Sallach
- Department of Environment and Geography, University of York, Heslington, York, United Kingdom
| | | |
Collapse
|