1
|
Büngener L, Galvão A, Postila H, Heiderscheidt E. Microplastic retention in green walls for nature-based and decentralized greywater treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125047. [PMID: 39357553 DOI: 10.1016/j.envpol.2024.125047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/30/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
In wastewater treatment, two issues have recently received increased attention: nature-based solutions for addressing urban water stress through decentralized treatment and re-use; and emerging pollutants such as microplastics (MPs). At the interface of these, this study investigated living green walls for greywater treatment and their potential for MP removal. A large, pilot-scale green wall was irrigated with greywater (a mix of water collected from laundry, dishwasher, bathroom sinks, and synthetic greywater), and effluent from planted and unplanted sections was compared. MPs >50 μm were analyzed using μRaman spectroscopy and supplementary fluorescence microscopy imaging. The green wall proved efficient for the reduction of chemical oxygen demand (COD) (around 80%), removal of total suspended solids (TSS) (around 90%) and MPs, especially for MPs of the non-polar, hydrophobic polymer type polystyrene and MPs sized 100-500 μm. MP removal was improved in the planted (50-60%) compared to the unplanted section (20%), especially for the size fraction 100-500 μm. Physical filtration by the green wall growing media (a mix of perlite with a grain size of 1-5 mm, and coconut fiber), which was further enhanced by plant roots decreasing the effective pore size, can be considered the most important removal mechanism. Charge-mediated adsorption cannot be expected as MPs and growing media mix were both negatively charged at the prevailing water pH (7-8). Fluorescence imaging for MP analysis, using a merged UV/blue light fluorograph, overestimated MP concentrations in greywater (hundreds of MPs per sample were identified by fluorescence imaging versus tens of MPs by μRaman spectroscopy) and would benefit from further improvement before it can be reliably applied as a cheaper and faster alternative methodology for MP analysis.
Collapse
Affiliation(s)
- Lina Büngener
- Water, Energy and Environmental Engineering, Faculty of Technology, 90014, University of Oulu, Finland.
| | - Ana Galvão
- CERIS, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Heini Postila
- Water, Energy and Environmental Engineering, Faculty of Technology, 90014, University of Oulu, Finland
| | - Elisangela Heiderscheidt
- Water, Energy and Environmental Engineering, Faculty of Technology, 90014, University of Oulu, Finland
| |
Collapse
|
2
|
Stefanatou A, Vouzi L, Petousi I, Koukoura A, Gatidou G, Stasinakis AS, Fountoulakis MS. Treatment of real laundry wastewater using vertical flow constructed wetland planted with the ornamental climbing plant Trachelospermum jasminoides: assessing the removal of conventional pollutants and benzotriazoles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43281-43291. [PMID: 38902442 DOI: 10.1007/s11356-024-34035-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
This study investigates the effectiveness of vertical flow constructed wetlands (VFCWs) planted with a climbing ornamental plant for on-site treatment of real laundry wastewater. Specifically, the presence or absence of Trachelospermum jasminoides was evaluated for the removal performance of conventional pollutants (turbidity, TSS, COD, TP) and benzotriazoles (BTRs): 1H-benzotriazole (BTR), 5-methyl-1H-benzotriazole (5-TTR), 5-chlorobenzotriazole (CBTR), and xylytriazole (XTR). Results revealed that high removal efficiencies ranging from 92 to 98% were presented in both planted and unplanted systems for turbidity, TSS, and COD. Moreover, high removal rates were observed for CBTR and XTR, which were the only compounds found in real laundry wastewater, in both VFCW systems (planted: 100%; 94%; unplanted: 87%; 92%, respectively). The contribution of plants to the pollutant's removal was not statistically significant for all examined parameters. However, T. jasminoides demonstrated the ability to survive and grow without any visible symptoms under the harsh conditions of laundry wastewater, enabling the development of green facade. According to the findings, the application of VFCWs for on-site laundry wastewater treatment in buildings seems to be a highly promising solution, not only for primarily removing conventional pollutants but also for addressing emerging contaminants, specifically BTRs.
Collapse
Affiliation(s)
- Aimilia Stefanatou
- Department of Environment, University of the Aegean, 81100, Mytilene, Greece.
| | - Lydia Vouzi
- Department of Environment, University of the Aegean, 81100, Mytilene, Greece
| | - Ioanna Petousi
- Department of Environment, University of the Aegean, 81100, Mytilene, Greece
| | - Asimina Koukoura
- Department of Environment, University of the Aegean, 81100, Mytilene, Greece
| | - Georgia Gatidou
- Department of Environment, University of the Aegean, 81100, Mytilene, Greece
| | | | | |
Collapse
|
3
|
Zhao L, Tang J, Xu Y, Zhang Y, Song Z, Fu G, Hu Z. A vertical-flow constructed wetland-microalgal membrane photobioreactor integrated system for treating high-pollution-load marine aquaculture wastewater: A lab-scale study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170465. [PMID: 38290681 DOI: 10.1016/j.scitotenv.2024.170465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
Individual biological water treatment techniques often prove ineffective in removing accumulated high concentrations of nitrogen and phosphorus in the late stages of biofloc aquaculture. To address this issue, we integrated a previously developed autotrophic denitrification and nitrification integrated constructed wetland (ADNI-CW) with a microalgal membrane photobioreactor (MPBR). Under high nitrogen and phosphorus pollution loads in the influent, the standalone ADNI-CW system achieved removal rates of only 24.17 % ± 2.82 % for total nitrogen (TN) and 25.30 % ± 2.59 % for total phosphorus (TP). The optimal conditions for TN and TP degradation and microalgal biomass production in the Chlorella MPBR, determined using response surface methodology, were an inoculum OD680 of 0.394, light intensity of 161.583 μmol/m2/s, and photoperiod of 16.302 h light:7.698 h dark. Under the optimal operating conditions, the integrated ADNI-CW-MPBR system achieved remarkable TN and TP removal rates of 92.63 % ± 2.8 % and 77.46 % ± 8.41 %, respectively, and a substantial microalgal biomass yield of 54.58 ± 6.8 mg/L/day. This accomplishment signifies the successful achievement of efficient nitrogen and phosphorus removal from high-pollution-load marine aquaculture wastewater along with the acquisition of valuable microalgal biomass. A preliminary investigation of the microbial community composition and algal-bacterial interactions in different operational stages of the MPBR system revealed that unclassified_d__Bacteria, Chlorophyta, and Planctomycetes were predominant phyla. The collaborative relationships between bacteria and Chlorella surpassed competition, ensuring highly efficient nitrogen and phosphorus removal in the MPBR system. This study laid the foundation for the green and sustainable development of the aquaculture industry.
Collapse
Affiliation(s)
- Lin Zhao
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, College of Biology and Food engineering, Fuyang Normal University, Fuyang 236037, China; Guangdong Technology Research Center for Marine Algal Bioengineering, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jun Tang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, College of Biology and Food engineering, Fuyang Normal University, Fuyang 236037, China
| | - Yuwei Xu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, College of Biology and Food engineering, Fuyang Normal University, Fuyang 236037, China
| | - Yifan Zhang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, College of Biology and Food engineering, Fuyang Normal University, Fuyang 236037, China
| | - Zihao Song
- Guangdong Technology Research Center for Marine Algal Bioengineering, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Guiping Fu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
4
|
Zhang S, Shen C, Zhang F, Wei K, Shan S, Zhao Y, Man YB, Wong MH, Zhang J. Microplastics removal mechanisms in constructed wetlands and their impacts on nutrient (nitrogen, phosphorus and carbon) removal: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170654. [PMID: 38331284 DOI: 10.1016/j.scitotenv.2024.170654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Microplastics (MPs) are now prevalent in aquatic ecosystems, prompting the use of constructed wetlands (CWs) for remediation. However, the interaction between MPs and CWs, including removal efficiency, mechanisms, and impacts, remains a subject requiring significant investigation. This review investigates the removal of MPs in CWs and assesses their impact on the removal of carbon, nitrogen, and phosphorus. The analysis identifies crucial factors influencing the removal of MPs, with substrate particle size and CWs structure playing key roles. The review highlights substrate retention as the primary mechanism for MP removal. MPs hinder plant nitrogen uptake, microbial growth, community composition, and nitrogen-related enzymes, reducing nitrogen removal in CWs. For phosphorus and carbon removal, adverse effects of MPs on phosphorus elimination are observed, while their impact on carbon removal is minimal. Further research is needed to understand their influence fully. In summary, CWs are a promising option for treating MPs-contaminated wastewater, but the intricate relationship between MPs and CWs necessitates ongoing research to comprehend their dynamics and potential consequences.
Collapse
Affiliation(s)
- Shaochen Zhang
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Cheng Shen
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China.
| | - Fuhao Zhang
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Kejun Wei
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Shengdao Shan
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China
| | - Yu Bon Man
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, PR China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, PR China
| | - Jin Zhang
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, Zhejiang University of Science and Technology, Hangzhou 310023, PR China.
| |
Collapse
|
5
|
Ding S, Gu X, Sun S, He S. Optimization of microplastic removal based on the complementarity of constructed wetland and microalgal-based system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169081. [PMID: 38104829 DOI: 10.1016/j.scitotenv.2023.169081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/06/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
As one of the emblematic emerging contaminants, microplastics (MPs) have aroused great public concern. Nevertheless, the global community still insufficiently acknowledges the ecological health risks and resolution strategies of MP pollution. As the nature-based biotechnologies, the constructed wetland (CW) and microalgal-based system (MBS) have been applied in exploring the removal of MPs recently. This review separately presents the removal research (mechanism, interactions, implications, and technical defects) of MPs by a single method of CWs or MBS. But one thing with certitude is that the exclusive usage of these techniques to combat MPs has non-negligible and formidable challenges. The negative impacts of MP accumulation on CWs involve toxicity to macrophytes, substrates blocking, and nitrogen-removing performance inhibition. While MPs restrict MBS practical application by making troubles for separation difficulties of microalgal-based aggregations from effluent. Hence the combined strategy of microalgal-assisted CWs is proposed based on the complementarity of biotechnologies, in an attempt to expand the removing size range of MPs, create more biodegradable conditions and improve the effluent quality. Our work evaluates and forecasts the potential of integrating combination for strengthening micro-polluted wastewater treatment, completing the synergistic removal of MP-based co-pollutants and achieving long-term stability and sustainability, which is expected to provide new insights into MP pollution regulation and control.
Collapse
Affiliation(s)
- Shaoxuan Ding
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Engineering Research Center of Landscape Water Environment, Shanghai 200031, PR China.
| |
Collapse
|
6
|
Gupta N, Parsai T, Kulkarni HV. A review on the fate of micro and nano plastics (MNPs) and their implication in regulating nutrient cycling in constructed wetland systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 350:119559. [PMID: 38016236 DOI: 10.1016/j.jenvman.2023.119559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/06/2023] [Accepted: 11/04/2023] [Indexed: 11/30/2023]
Abstract
This review discusses the micro-nano plastics (MNPs) and their interaction with physical, chemical and biological processes in a constructed wetland (CW) system that is typically used as a nature-based tertiary wastewater treatment for municipal as well as industrial applications. Individual components of the CW system such as substrate, microorganisms and plants were considered to assess how MNPs influence the CW processes. One of the main functions of a CW system is removal of nutrients like nitrogen (N) and phosphorus (P) and here we highlight the pathways through which the MNPs influence CW's efficacy of nutrient removal. The presence of morphologically (size and shape) and chemically different MNPs influence the growth rate of microorganisms important in N and P cycling, invertebrates, decomposers, and the plants which affect the overall efficiency of a CW treatment system. Certain plant species take up the MNPs, and some toxicity has been observed. This review focuses on two significant aspects: (1) the presence of MNPs in a significant concentration affects the efficiency of N and P removal, and (2) the removal of MNPs. Because MNPs reduce the enzyme activities in abundance and overproduction of ROS oxidizes the enzyme active sites, resulting in the depletion of proteins, ultimately inhibiting nitrogen and phosphorus removal within the substrate layer. The review found that the majority of the studies used sand-activated carbon (SAC), granular-activated carbon (GAC), rice straw, granular limestone, and calcium carbonate, as a substrate for CW treatment systems. Common plant species used in the CW include Phragmites, Arabidopsis thaliana, Lepidium sativum, Thalia dealbata, and Canna indica, which were also found to be dominant in the uptake of the MNPs in the CWs. The MNPs were found to affect earthworms such as Eisenia fetida, Caenorhabditis elegans, and, Enchytraeus crypticus, whereas Metaphire vulgaris were found unaffected. Though various mechanisms take place during the removal process, adsorption and uptake mechanism effectively emphasize the removal of MNPs and nitrogen and phosphorus in CW. The MNPs characteristics (type, size, and concentration) play a crucial role in the removal efficiency of nano-plastics (NPs) and micro-plastics (MPs). The enhanced removal efficiency of NPs compared to MPs can be attributed to their smaller size, resulting in a faster reaction rate. However, NPs dose variation showed fluctuating removal efficiency, whereas MPs dose increment reduces removal efficiency. MP and NPs dose variation also affected toxicity to plants and earthworms as observed from data. Understanding the fate and removal of microplastics in wetland systems will help determine the reuse potential of wastewater and restrict the release of microplastics. This study provides information on various aspects and highlights future gaps and needs for MNP fate study in CW systems.
Collapse
Affiliation(s)
- Nikita Gupta
- School of Civil and Environmental Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh, 175005, India.
| | - Tanushree Parsai
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - Harshad Vijay Kulkarni
- School of Civil and Environmental Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh, 175005, India.
| |
Collapse
|
7
|
Büngener L, Postila H, Löder MGJ, Laforsch C, Ronkanen AK, Heiderscheidt E. The fate of microplastics from municipal wastewater in a surface flow treatment wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166334. [PMID: 37591375 DOI: 10.1016/j.scitotenv.2023.166334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Microplastics (MPs) are an anthropogenic pollutant of emerging concern prominent in both raw and treated municipal wastewater as well as urban and agricultural run-off. There is a critical need for the mitigation of both point- and diffuse sources, with treatment wetlands a possible sustainable nature-based solution. In this study, the possible retention of MPs in treatment wetlands of the widely used surface flow (SF) type was investigated. In- and outflow water, as well as atmospheric deposition, at a full-scale reed-based SF wetland (operating as a polishing phase of municipal wastewater treatment) was analyzed for MPs in a size range of 25-1000 μm. FPA-based μFT-IR spectroscopic imaging was used in combination with automated data analysis software, allowing for an unbiased assessment of MP numbers, polymer types and size distribution. Inflow water samples (secondary treated wastewater) contained 104 MPs m-3 and 56 MPs m-3 in sampling campaigns 1 and 2, respectively. Passage through the SF wetland increased the MP concentration in the water by 92 % during a rain intense period (campaign 1) and by 43 % during a low precipitation period (campaign 2). The MP particle numbers, size and polymer type distribution varied between the two sampling campaigns, making conclusions around the fate of specific types of MPs in SF wetlands difficult. Atmospheric deposition was measured to be 590 MPs m-2 week-1 during the rain-intense period. Our findings point towards atmospheric deposited MPs as an important factor in the fate of MPs in SF wetlands, causing an increase of MP concentrations, and potentially explaining the variations observed in MP concentrations in wetland effluent and removal efficiency. Furthermore, atmospheric deposition might also be a reason for the considerable inter-study variation regarding MPs removal efficiency in SF wetlands found in the available literature.
Collapse
Affiliation(s)
- Lina Büngener
- Water, Energy and Environmental Engineering, Faculty of Technology, 90014 University of Oulu, Finland.
| | - Heini Postila
- Water, Energy and Environmental Engineering, Faculty of Technology, 90014 University of Oulu, Finland
| | - Martin G J Löder
- Department of Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth 95440, Germany
| | - Christian Laforsch
- Department of Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth 95440, Germany
| | - Anna-Kaisa Ronkanen
- Water, Energy and Environmental Engineering, Faculty of Technology, 90014 University of Oulu, Finland; Finnish Environment Institute, Marine and freshwater solutions, Paavo Havaksen Tie 3, P. O. Box 413, FI-90014 Oulu, Finland
| | - Elisangela Heiderscheidt
- Water, Energy and Environmental Engineering, Faculty of Technology, 90014 University of Oulu, Finland
| |
Collapse
|
8
|
Cabrera DC, Wang Q, Martín M, Rajadel NO, Rousseau DPL, Hernández-Crespo C. Microplastics occurrence and fate in full-scale treatment wetlands. WATER RESEARCH 2023; 240:120106. [PMID: 37244019 DOI: 10.1016/j.watres.2023.120106] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
Treatment wetlands (TWs) are an efficient technology for removing microplastics (MPs) from wastewater, according to previous studies. This study investigates the dynamics and fate of MPs in two wastewater treatment plants (WWTPs) using TWs, one with horizontal subsurface flow (HF) and another with a floating plant system (FS). Special attention is paid to the retention produced in the sludge and the role of macrophyte roots. The abundance of MPs in the influent to the WWTPs was on average 20.3 ± 0.85 MP/L and 8.4 ± 1.13 MP/L in HF and FS respectively, while the effluent had 0.58 ± 0.07 MP/L and 0.17 ± 0.06 MP/L, thus giving overall efficiencies of 97.42% and 98.13%, respectively. In the HF wetland, sludge samples near the inlet and the outlet were taken, distinguishing between sludge adhered to gravel and sludge attached to roots. In the floating macrophytes, sludge samples from secondary and tertiary treatments were taken. The results indicate that roots play a significant role in MPs retention. In the HF wetland, the complex formed by roots and gravel attached more MPs than gravel alone in the final zone of the wetland. In the FS, roots retained a significant quantity of MPs, both in the secondary and tertiary treatments, thus giving rise to a sludge less concentrated in MPs. This study aims to improve the knowledge of MPs behavior and fate in full-scale TWs, providing valuable information to enhance retention efficiency.
Collapse
Affiliation(s)
- Darío Calzadilla Cabrera
- Instituto Universitario de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Spain
| | - Qintong Wang
- Ghent University, Faculty of Bioscience Engineering, Department of Green Chemistry and Technology, Belgium
| | - Miguel Martín
- Instituto Universitario de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Spain
| | | | - Diederik P L Rousseau
- Ghent University, Faculty of Bioscience Engineering, Department of Green Chemistry and Technology, Belgium
| | - Carmen Hernández-Crespo
- Instituto Universitario de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Spain.
| |
Collapse
|
9
|
Monsalves N, Leiva AM, Gómez G, Vidal G. Organic Compounds and Antibiotic-Resistant Bacteria Behavior in Greywater Treated by a Constructed Wetland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2305. [PMID: 36767672 PMCID: PMC9916033 DOI: 10.3390/ijerph20032305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Laundry greywater is considered as an alternative source of non-potable water, as it is discharged in approximately 70% of homes. Because this water contains compounds such as biodegradable and recalcitrant organic matter, surfactants, and microbiological compounds, it must be treated prior to reuse. Therefore, the objective of this study was to assess the behavior of organic matter and antibiotic-resistant bacteria (ARB) in greywater treated by a constructed wetland (CW). The results show that the organic matter removal efficiencies were 67.19%, 50.15%, and 63.57% for biological oxygen demand (BOD5), chemical oxygen demand (COD) and total organic carbon (TOC), respectively; these efficiencies were not significant (p > 0.05). In addition, the CW allows the distribution of TOC and ionic compounds in the fractions below 1000 Da to increase by 5.03% and 13.05%, respectively. Meanwhile, the treatment of microbiological compounds generated non-significant removals (p > 0.05), along with increases in bacteria resistant to the antibiotics ciprofloxacin (CIP) and ceftriaxone (CTX) of 36.34%, and 40.79%, respectively. In addition, a strong association between ARB to CIP, CTX, cationic and non-ionic surfactants was determined, indicating the role of surfactants in ARB selection. It is suggested that disinfection systems should be employed prior to the reuse of the treated water.
Collapse
Affiliation(s)
- Naomi Monsalves
- Environmental Engineering & Biotechnology Group (GIBA-UDEC), Environmental Science Faculty, Universidad de Concepción, Concepción 4030000, Chile
- Water Research Center for Agriculture and Mining (CRHIAM), ANID Fondap Center, Victoria 1295, Concepción 4030000, Chile
| | - Ana María Leiva
- Environmental Engineering & Biotechnology Group (GIBA-UDEC), Environmental Science Faculty, Universidad de Concepción, Concepción 4030000, Chile
- Water Research Center for Agriculture and Mining (CRHIAM), ANID Fondap Center, Victoria 1295, Concepción 4030000, Chile
| | - Gloria Gómez
- Environmental Engineering & Biotechnology Group (GIBA-UDEC), Environmental Science Faculty, Universidad de Concepción, Concepción 4030000, Chile
- Water Research Center for Agriculture and Mining (CRHIAM), ANID Fondap Center, Victoria 1295, Concepción 4030000, Chile
| | - Gladys Vidal
- Environmental Engineering & Biotechnology Group (GIBA-UDEC), Environmental Science Faculty, Universidad de Concepción, Concepción 4030000, Chile
- Water Research Center for Agriculture and Mining (CRHIAM), ANID Fondap Center, Victoria 1295, Concepción 4030000, Chile
| |
Collapse
|