1
|
Guo Z, Tang X, Wang W, Luo Z, Zeng Y, Zhou N, Yu Z, Wang D, Song B, Zhou C, Xiong W. The photo-based treatment technology simultaneously removes resistant bacteria and resistant genes from wastewater. J Environ Sci (China) 2025; 148:243-262. [PMID: 39095161 DOI: 10.1016/j.jes.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 08/04/2024]
Abstract
Because of the recent widespread usage of antibiotics, the acquisition and dissemination of antibiotic-resistance genes (ARGs) were prevalent in the majority of habitats. Generally, the biological wastewater treatment processes used in wastewater treatment plants have a limited efficiencies of antibiotics resistant bacteria (ARB) disinfection and ARGs degradation and even promote the proliferation of ARGs. Problematically, ARB and ARGs in effluent pose potential risks if they are not further treated. Photocatalytic oxidation is considered a promising disinfection technology, where the photocatalytic process generates many free radicals that enhance the interaction between light and deoxyribonucleic acid (DNA) for ARB elimination and subsequent degradation of ARGs. This review aims to illustrate the progress of photocatalytic oxidation technology for removing antibiotics resistant (AR) from wastewater in recent years. We discuss the sources and transfer of ARGs in wastewater. The overall removal efficiencies of ultraviolet radiation (UV)/chlorination, UV/ozone, UV/H2O2, and UV/sulfate-radical based system for ARB and ARGs, as well as the experimental parameters and removal mechanisms, are systematically discussed. The contribution of photocatalytic materials based on TiO2 and g-C3N4 to the inactivation of ARB and degradation of ARGs is highlighted, producing many free radicals to attack ARB and ARGs while effectively limiting the horizontal gene transfer (HGT) in wastewater. Finally, based on the reviewed studies, future research directions are proposed to realize specific photocatalytic oxidation technology applications and overcome current challenges.
Collapse
Affiliation(s)
- Zicong Guo
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Xiang Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenjun Wang
- School of Resources and Environment, Hunan University of Technology and Business, Changsha 410205, China
| | - Zhangxiong Luo
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Yuxi Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Nan Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Zhigang Yu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Biao Song
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Chengyun Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China.
| | - Weiping Xiong
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China.
| |
Collapse
|
2
|
Ashraf M, Abbasi N, Gupta PK, Chakma S, Ziauddin Ahammad S. Effect of Soil-pH, temperature and moisture content on sorption dynamics of metformin and erythromycin. ENVIRONMENTAL RESEARCH 2024; 263:120270. [PMID: 39481784 DOI: 10.1016/j.envres.2024.120270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/02/2024]
Abstract
The rising soil-groundwater quality issues due to pharmaceuticals and personal care products (PPCPs) contamination have spurred significant concern. To understand the sorption characteristics of metformin (MTN) and erythromycin (ETM) in sandy and sandy loam soils with varying organic matter and particle composition, sorption kinetics (single and competitive), isotherms, and thermodynamics were studied. The effects of pH and soil moisture content (SMC) were also investigated at environmentally relevant concentrations. The equilibrium time of MTN and ETM sorption by the three soils in a competitive solute system was about 4 h, and the sorption process was in line with a pseudo-second-order model. The rate-determining step in the process involved both intraparticle diffusion and liquid film diffusion mechanisms for the two PPCPs. The highest pollutant uptake occurred in soils with higher organic matter, driven by enhanced H-bonding, electrostatic interactions, and π-π and n-π interactions facilitated by the organic matter. The equilibrium data in the three soils was well described by the Freundlich model and confirmed favourable adsorption (1/nf = 1.01-1.90). The sorption coefficient (Kd) on the three soils ranged from 2.1 to 332 L/kg for MTN and from 6.25 to 845 L/kg for ETM. The adsorption process was feasible at 293 K and 303 K (ΔG° = - 0.16 to -10.24 kJ/mol), physical and exothermic in nature (ΔH° = -75.21 to -10.30 kJ/mol) for both the contaminants. Observed alterations in Qe with pH confirmed the participation of electrostatic interactions. A low SMC favoured both MTN and ETM sorption onto the sandy soil. Overall, ETM exhibits higher expected sorption, whereas MTN has a greater tendency for migration in the soils and is thus liable to contaminate the groundwater. The study accentuates novel insights into the transport and fate of MTN and ETM in soil-groundwater systems at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Maliha Ashraf
- School of Interdisciplinary Research, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Neha Abbasi
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Pankaj Kumar Gupta
- Centre of Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India; Faculty of Environment, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Sumedha Chakma
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| | - Shaikh Ziauddin Ahammad
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
3
|
Wen L, Cui Y, Huang L, Wei C, Wang G, Zhang J, Jiang Y, Wei Y, Shen P. Changes of composition and antibiotic resistance of fecal coliform bacteria in municipal wastewater treatment plant. J Environ Sci (China) 2024; 146:241-250. [PMID: 38969452 DOI: 10.1016/j.jes.2023.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 07/07/2024]
Abstract
The dynamics of the composition and antibiotic resistance of the fecal coliform bacteria (FCB) in a typical wastewater treatment plant (WWTP) were investigated concerning the seasonal changes. Results showed that WWTP could remove the FCB concentration by 3∼5 logs within the effluent of 104∼105 CFU/L, but the antibiotic resistant rate of FCB species increased significantly after WWTP. The dominant FCB changed from Escherichia coli in the influent (∼73.0%) to Klebsiella pneumoniae in the effluent (∼53.3%) after WWTP, where the Escherichia coli was removed the most, while Klebsiella pneumoniae was the most persistent. The secondary tank removed the most of FCB (by 3∼4 logs) compared to other processes, but increased all the concerned antibiotic resistant rate. The potential super bugs of FCB community showing resistance to all the target antibiotics were selected in the biological treatment unit of WWTP. The FCB showed the highest multiple antibiotic resistance (92.9%) in total which even increased to 100% in the effluent. Klebsiella has the highest antibiotic resistant rate in FCB, with a multiple antibiotic resistance rate of 98.4%. These indicated that the Klebsiella pneumoniae not just Escherichia coli should be specially emphasized after WWTP concerning the health risk associated with FCB community.
Collapse
Affiliation(s)
- Luoyao Wen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Yunwei Cui
- College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Luodong Huang
- College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Chunzhong Wei
- Nanning Engineering & Technology Research Center for Water Safety, Guangxi Beitou Environmental Protection & Water Group Co., LTD., Nanning 530025, China
| | - Gangan Wang
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yanbo Jiang
- Nanning Engineering & Technology Research Center for Water Safety, Guangxi Beitou Environmental Protection & Water Group Co., LTD., Nanning 530025, China; International Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peihong Shen
- College of Life Science and Technology, Guangxi University, Nanning 530005, China.
| |
Collapse
|
4
|
Santhappan JS, Kalaiselvan N, Assis SM, Amjith LR, Glivin G, Mathimani T. Origin, types, and contribution of emerging pollutants to environmental degradation and their remediation by physical and chemical techniques. ENVIRONMENTAL RESEARCH 2024; 257:119369. [PMID: 38848998 DOI: 10.1016/j.envres.2024.119369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024]
Abstract
The growing presence of emerging pollutants (EPs) in aquatic environments, as well as their harmful impacts on the biosphere and humans, has become a global concern. Recent developments and advancements in pharmaceuticals, agricultural practices, industrial activities, and human personal care substances have paved the way for drastic changes in EP concentrations and impacts on the ecosystem. As a result, it is critical to mitigate EP's harmful effects before they jeopardize the ecological equilibrium of the overall ecosystem and the sustainable existence of life on Earth. This review comprehensively documented the types, origins, and remediation strategies of EPs, and underscored the significance of this study in the current context. We briefly stated the major classification of EPs based on their organic and inorganic nature. Furthermore, this review systematically evaluates the occurrence of EPs due to the fast-changing ecological scenarios and their impact on human health. Recent studies have critically discussed the emerging physical and chemical processes for EP removal, highlighting the limitations of conventional remediation technologies. We reviewed and presented the challenges associated with EP remediation and degradation using several methods, including physical and chemical methods, with the application of recent technologies. The EP types and various methods discussed in this review help the researchers understand the nature of present-day EPs and utilize an efficient method of choice for EP removal and management in the future for sustainable life and development activities on the planet.
Collapse
Affiliation(s)
- Joseph Sekhar Santhappan
- College of Engineering and Technology, University of Technology and Applied Sciences, Musandam, Oman
| | - Narasimman Kalaiselvan
- Technology Information Forecasting and Assessment Council (TIFAC), Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Shan M Assis
- Department of Mechanical Engineering, Musaliar College of Engineering and Technology, Pathanamthitta, Kerala, 689653, India
| | - L R Amjith
- Department of Mechanical Engineering, Marian Engineering College, Kazhakuttom, Thiruvananthapuram, 695582, Kerala, India
| | - Godwin Glivin
- Department of Mechanical Engineering, Sree Chitra Thirunal College of Engineering, Pappanamcode, Thiruvananthapuram, Kerala, 695018, India
| | - Thangavel Mathimani
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
5
|
Kachhadiya N, Patel UD. Low-cost, reliable, and highly efficient removal of COD and total nitrogen from sewage using a sponge-filled trickling filter. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:665-679. [PMID: 39141028 DOI: 10.2166/wst.2024.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 07/05/2024] [Indexed: 08/15/2024]
Abstract
Development of low-cost and reliable reactors demanding minimal supervision is a need-of-the-hour for sewage treatment in rural areas. This study explores the performance of a multi-stage sponge-filled trickling filter (SPTF) for sewage treatment, employing polyethylene (PE) and polyurethane (PU) media. Chemical oxygen demand (COD) and nitrogen transformation were evaluated at hydraulic loading rates (HLRs) ranging from 2 to 6 m/d using synthetic sewage as influent. At influent COD of ∼350 mg/L, PU-SPTF and PE-SPTF achieved a COD removal of 97% across all HLRs with most of the removal occurring in the first segments. Operation of PE-SPTF at an HLR of 6 m/d caused substantial wash-out of biomass, while PU-SPTF retained biomass and achieved effluent COD < 10 mg/L even at HLR of 8-10 m/d. The maximum Total Nitrogen removal by PE-SPTF and PU-SPTF reactors was 93.56 ± 1.36 and 92.24 ± 0.66%, respectively, at an HLR of 6 m/d. Simultaneous removal of ammonia and nitrate was observed at all the HLRs in the first segment of both SPTFs indicating ANAMMOX activity. COD removal data, media depth, and HLRs were fitted (R2 > 0.99) to a first-order kinetic relationship. For a comparable COD removal, CO2 emission by PU-SPTF was 3.5% of that of an activated sludge system.
Collapse
Affiliation(s)
- Navneet Kachhadiya
- Civil Engineering Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Upendra D Patel
- Civil Engineering Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India E-mail: ;
| |
Collapse
|
6
|
Zhang Y, Huang G, Zhang Q, Bi X, Chu H, Liu Z, Luo J, Bai S, Mo S, Wang H, Fu M. Occurrence, distribution, and ecological risk assessment of pharmaceuticals and personal care products in the surface water of Lipu River, China. ENVIRONMENTAL RESEARCH 2024; 252:118908. [PMID: 38614197 DOI: 10.1016/j.envres.2024.118908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Pharmaceuticals and Personal Care Products (PPCPs) are inadvertently released into the aquatic environment, causing detrimental effects on aquatic ecosystem. There is an urgent need of an in-deep investigation on contamination information of PPCPs in aquatic environment as well as the ecological risks to the aquatic ecosystem. This study was carried out in Lipu River basin, China, to investigate the distribution pattern and ecological risks of PPCPs. Results showed that PPCPs pollution is ubiquitous, 29 out of 30 targeted PPCPs were detected in Lipu River. Fourteen PPCPs were detected with a frequency of 100% in all water samples, and ten PPCPs were detected with a frequency of more than 80%. The cumulated PPCPs concentrations ranged from 33.30 ng/L to 99.60 ng/L, with a median value of 47.20 ng/L in Lipu River. Caffeine, flumequine, nifedipine, and lomefloxacin were the predominant PPCPs in study area. Caffeine showed high ecological risk, five and seven individual PPCP showed medium and low ecological risk to algae.
Collapse
Affiliation(s)
- Yanan Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China
| | - Guibin Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Qin Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Xiaoqian Bi
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Hang Chu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Zixuan Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Jun Luo
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Shaoyuan Bai
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Shengpeng Mo
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Hui Wang
- Hengsheng Water Environment Treatment Co., Ltd., Guilin, 541100, China
| | - Mingming Fu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
7
|
Chen B, Li F, Lin Y, Yang L, Wei W, Ni BJ, Chen X. Degradation of Chloroquine by Ammonia-Oxidizing Bacteria: Performance, Mechanisms, and Associated Impact on N 2O Production. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4662-4669. [PMID: 38422482 DOI: 10.1021/acs.est.3c09928] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Since the mass production and extensive use of chloroquine (CLQ) would lead to its inevitable discharge, wastewater treatment plants (WWTPs) might play a key role in the management of CLQ. Despite the reported functional versatility of ammonia-oxidizing bacteria (AOB) that mediate the first step for biological nitrogen removal at WWTP (i.e., partial nitrification), their potential capability to degrade CLQ remains to be discovered. Therefore, with the enriched partial nitrification sludge, a series of dedicated batch tests were performed in this study to verify the performance and mechanisms of CLQ biodegradation under the ammonium conditions of mainstream wastewater. The results showed that AOB could degrade CLQ in the presence of ammonium oxidation activity, but the capability was limited by the amount of partial nitrification sludge (∼1.1 mg/L at a mixed liquor volatile suspended solids concentration of 200 mg/L). CLQ and its biodegradation products were found to have no significant effect on the ammonium oxidation activity of AOB while the latter would promote N2O production through the AOB denitrification pathway, especially at relatively low DO levels (≤0.5 mg-O2/L). This study provided valuable insights into a more comprehensive assessment of the fate of CLQ in the context of wastewater treatment.
Collapse
Affiliation(s)
- Bokai Chen
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Fuyi Li
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Yinghui Lin
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Linyan Yang
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Xueming Chen
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
8
|
Munir Ahamed J, Dahms HU, Huang YL. Heavy metal tolerance, and metal biosorption by exopolysaccharides produced by bacterial strains isolated from marine hydrothermal vents. CHEMOSPHERE 2024; 351:141170. [PMID: 38219989 DOI: 10.1016/j.chemosphere.2024.141170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/14/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
The present study highlights heavy metal tolerance, EPS production, and biosorption capacity of four hydrothermal vent bacterial strains, namely Exiguobacterium aquaticum, Mammaliicoccus sciuri, Micrococcus luteus, and Jeotgalicoccus huakuii against As, Cd, Cr, Cu, Co, Pb and Ni. The biosorption assay showed high removal efficiency of As (83%) by E. aquaticum, Cd (95%) by M. sciuri, Cu (94%) by M. luteus, and Ni (89%) by J. huakuii and their produced EPS with these metals in aqueous solution were 84%, 85%, 98%, and 91%, respectively. The maximum EPS yield was attained by optimized medium composition consisting of 1% Xylose, and 1% NaCl at pH 7. In metal-amended conditions, the four bacterial strains showed induced EPS production in the initial concentrations. SEM with EDX and CLSM images showed that the growth and EPS production of bacterial strains were affected by metal ion concentrations. A phenol sulphuric acid method and BCA assay were used to identify both the carbohydrate and total protein content of four extracted EPS. A DPPH assay revealed that EPS influences free radical scavenging and has a highly enhanced synergistic effect with its antioxidant activity. FT-IR analysis of four extracted EPS showed the shifting of peaks in the functional groups of EPS before and after adsorption of metal ions. At pH 5 and after 60 min contact time metal removal efficiency and adsorption capacity increased as calculated for As, Cd, Cu, and Ni by four extracted EPS: (86%, 20 mg/g), (74%, 19 mg/g), (94%, 60 mg/g) and (89%, 32 mg/g) and (89%, 16 mg/g), (85%, 16 mg/g), (96%, 22 mg/g) and (91%, 16 mg/g), respectively. The Langmuir compared to the Freundlich model was found to better represent the adsorption by EPS providing maximum adsorption capacities for As (34.65 mg/g), Cd (52.88 mg/g), Cu (24.91 mg/g), and Ni (58.38 mg/g).
Collapse
Affiliation(s)
- Johnthini Munir Ahamed
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| | - Yeou Lih Huang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; College of Professional Studies, National Pingtung University of Science and Technology, Pingtung, Taiwan; Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
9
|
Mtetwa HN, Amoah ID, Kumari S, Bux F, Reddy P. Surveillance of multidrug-resistant tuberculosis in sub-Saharan Africa through wastewater-based epidemiology. Heliyon 2023; 9:e18302. [PMID: 37576289 PMCID: PMC10412881 DOI: 10.1016/j.heliyon.2023.e18302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
The spread of multidrug-resistant tuberculosis (MDR-TB) is a serious public health issue, particularly in developing nations. The current methods of monitoring drug-resistant TB (DR-TB) using clinical diagnoses and hospital records are insufficient due to limited healthcare access and underreporting. This study proposes using Wastewater-Based Epidemiology (WBE) to monitor DR-TB in six African countries (Ghana, Nigeria, Kenya, Uganda, Cameroon, and South Africa) and examines the impact of treated wastewater on the spread of TB drug-resistant genes in the environment. Using droplet-digital polymerase chain reaction (ddPCR), the study evaluated untreated and treated wastewater samples in selected African countries for TB surveillance. There was a statistically significant difference in concentrations of genes conferring resistance to TB drugs in wastewater samples from the selected countries (p-value<0.05); South African samples exhibited the highest concentrations of 4.3(±2,77), 4.8(±2.96), 4.4(±3,10) and 4.7(±3,39) log copies/ml for genes conferring resistance to first-line TB drugs (katG, rpoB, embB and pncA respectively) in untreated wastewater. This may be attributed to the higher prevalence of TB/MDR-TB in SA compared to other African countries. Interestingly, genes conferring resistance to second-line TB drugs such as delamanid (ddn gene) and bedaquiline (atpE gene) were detected in relatively high concentrations (4.8(±3,67 and 3.2(±2,31 log copies/ml for ddn and atpE respectively) in countries, such as Cameroon, where these drugs are not part of the MDR-TB treatment regimens, perhaps due to migration or the unapproved use of these drugs in the country. The gene encoding resistance to streptomycin (rrs gene) was abundant in all countries, perhaps due to the common use of this antibiotic for infections other than TB. These results highlight the need for additional surveillance and monitoring, such as WBE, to gather data at a community level. Combining WBE with the One Health strategy and current TB surveillance systems can help prevent the spread of DR-TB in populations.
Collapse
Affiliation(s)
- Hlengiwe N. Mtetwa
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Isaac D. Amoah
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
- Department of Environmental Science, The University of Arizona, Shantz Building Rm 4291177 E 4th St.Tucson, AZ 85721, USA
| | - Sheena Kumari
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Poovendhree Reddy
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| |
Collapse
|
10
|
Singh A, Chaurasia D, Khan N, Singh E, Chaturvedi Bhargava P. Efficient mitigation of emerging antibiotics residues from water matrix: Integrated approaches and sustainable technologies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121552. [PMID: 37075921 DOI: 10.1016/j.envpol.2023.121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/14/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
The prevalence of antibiotic traces in the aquatic matrices is a concern due to the emanation of antibiotic resistance which requires a multifaceted approach. One of the potential sources is the wastewater treatment plants with a lack of advance infrastructure leading to the dissemination of contaminants. Continuous advancements in economic globalization have facilitated the application of several conventional, advanced, and hybrid techniques for the mitigation of rising antibiotic traces in the aquatic matrices that have been thoroughly scrutinized in the current paper. Although the implementation of existing mitigation techniques is associated with several limiting factors and barriers which require further research to enhance their removal efficiency. The review further summarizes the application of the microbial processes to combat antibiotic persistence in wastewater establishing a sustainable approach. However, hybrid technologies are considered as most efficient and environmental-benign due to their higher removal efficacy, energy-efficiency, and cost-effectiveness. A brief elucidation has been provided for the mechanism responsible for lowering antibiotic concentration in wastewater through biodegradation and biotransformation. Overall, the current review presents a comprehensive approach for antibiotic mitigation using existing methods however, policies and measures should be implemented for continuous monitoring and surveillance of antibiotic persistence in aquatic matrices to reduce their potential risk to humans and the environment.
Collapse
Affiliation(s)
- Anuradha Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Deepshi Chaurasia
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Nawaz Khan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ekta Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Preeti Chaturvedi Bhargava
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|