1
|
Lin W, Zhao J, Wu X, Jiang J, Zhou C, Zheng J, Zhang C, Guo Y, Wang L, Ng HY, Li S, Wang S. The effects of perfluoroalkyl substance pollution on microbial community and key metabolic pathways in the Pearl River Estuary. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 298:118293. [PMID: 40349469 DOI: 10.1016/j.ecoenv.2025.118293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 05/04/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
The extensive use of perfluoroalkyl substances (PFASs) has raised significant concerns regarding their adverse environmental implications. However, the understanding of their behaviors and biological effects in natural estuarine ecosystems remain limited. This study employed a multidisciplinary approach integrating chemical analysis, biological sequencing, and statistical modeling to comprehensively investigate the distribution of PFASs, as well as their intrinsic relationship with microbial community in the Pearl River Estuary (PRE), a rapidly urbanized area. Our findings demonstrate that the total PFAS concentrations ranged from 52-127 ng L-1 in water, and 2-70 μg kg-1 dry weight in sediment, with notably distinct compositions across habitats. Aquatic microbial communities exhibited higher sensitivity to environmental variables, including PFAS concentrations, attributed to increased stochasticity and reduced spatial turnover. Conversely, sediments harbored microbial communities with higher phylogenetic diversity, rendering them less susceptible to PFAS-induced stress. Furthermore, PFAS concentrations significantly affected microbial carbon, nitrogen, and phosphorus cycling, predominantly through indirect alterations in characteristic genus composition. Importantly, noteworthy variations in impacts were observed between perfluorinated carboxylic acids (PFCAs) and perfluorinated sulfonic acids (PFSAs), which might contingent upon C-F bond dissociation energies. The findings shed light on PFAS ecological roles and interaction patterns with microbial communities in human-impacted estuarine environments.
Collapse
Affiliation(s)
- Wei Lin
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China.
| | - Junlin Zhao
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Xingqi Wu
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Jiakun Jiang
- Center for Statistics and Data Science, Beijing Normal University, Zhuhai 519087, China
| | - Chunyang Zhou
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China
| | - Jiating Zheng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Cheng Zhang
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai 519087, China
| | - Ying Guo
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Li Wang
- Scientific Institute of Pearl River Water Resources Protection, Guangzhou 510610, China
| | - How Yong Ng
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Song Li
- Technical Centre for Ecology and Environment of Soil, Agriculture and Rural Areas, Ministry of Ecology and Environment, Beijing 100012, China
| | - Shengrui Wang
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
2
|
Xu S, Zhu P, Wang C, Zhang D, Zhang M, Pan X. Nanoscale exopolymer reassembly-trap mechanism determines contrasting PFOS exposure patterns in aquatic animals with different feeding habitats: A nano-visualization study. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135515. [PMID: 39178777 DOI: 10.1016/j.jhazmat.2024.135515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
The behavior and fate of PFOS (perfluorooctanesulfonate) in the aquatic environment have received great attention due to its high toxicity and persistence. The nanoscale supramolecular mechanisms of interaction between PFOS and ubiquitous EPS (exopolymers) remain unclear though EPS have been widely-known to influence the bioavailability of PFOS. Typically, the exposure patterns of PFOS in aquatic animals changed with the EPS-PFOS interaction are not fully understood. This study hypothesized that PFOS exposure and accumulation pathways depended on the PFOS-EPS interactive assembly behavior and animal species. Two model animals, zebrafish and chironomid larvae, with different feeding habitats were chosen for the exposure and accumulation tests at the environmental concentrations of PFOS in the absence and presence of EPS. It was found that PFOS triggered the self-assembly of EPS to form large aggregates which significantly trapped PFOS. PFOS accumulation was significantly promoted in zebrafish but drastically reduced in chironomid larvae because of the nanoscale interactive assembly between EPS and PFOS. The decreased dermal uptake but increased oral uptake of PFOS by zebrafish with large mouthpart size could be ascribed to the increased ingestion of PFOS-enriched EPS aggregates as food. For the chironomid larvae with small mouthpart size, the PFOS-EPS assemblies reduced the dermal, oral and intestinal uptake of PFOS. The nano-visualization evidences confirmed that the PFOS-enriched EPS-PFOS assemblies blocked PFOS penetration through skin of both animals. These findings provide novel knowledge about the ecological risk of PFOS in aquatic environments.
Collapse
Affiliation(s)
- Shuyan Xu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Pengfeng Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Caiqin Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Ming Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
3
|
Luo J, Zhao M. Self-flocculating Chlorella vulgaris: A high-efficiency purification mechanism of radioactive Th 4+ in an aquatic environment. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135294. [PMID: 39059294 DOI: 10.1016/j.jhazmat.2024.135294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
This study aimed to investigate the purification of radioactive thorium (Th4+) by Chlorella vulgaris in aquatic environments. Single-factor experiments and response surface optimization tests identified optimal purification conditions. The purification and metabolic response mechanisms of Chlorella to Th4+ were elucidated using physiological and biochemical analyses, three-dimensional excitation-emission matrix (3D-EEM) analysis, and metabolomic profiling. Increases in the Th4+ concentration caused Chlorella to self-flocculate, significantly improving the Th4+ purification efficiency. Under optimal conditions, the Th4+ purification efficiency for Th4+ in wastewater by Chlorella stabilized between 94.3 % and 98.2 %. Morphological analysis revealed that the purified Th4+ existed mainly in a stable residual state. Chlorella efficiently purified wastewater during treatment by regulating environmental pH, performing redox reactions, and utilizing extracellular polymeric substances (EPS) to interact with Th4+. Metabolomic analysis indicated that Chlorella adapted to the Th4+-contaminated environment and enhanced its purification function by adjusting the synthesis of metabolites, such as carbohydrates, nucleotides, and amino acids. Chlorella demonstrated a remarkable self-flocculation phenomenon and a high-efficiency purification capability for Th4+, offering new possibilities for environmental remediation. Its purification mechanism involves environmental regulation, redox reactions, and complex metabolic adjustments. The results presented here provide theoretical support for environmental remediation using Chlorella.
Collapse
Affiliation(s)
- Jing Luo
- College of Life Science, Northeast Forestry University, No. 26, Hexing Road, Harbin 150040, China
| | - Min Zhao
- College of Life Science, Northeast Forestry University, No. 26, Hexing Road, Harbin 150040, China.
| |
Collapse
|
4
|
Ji B, Zhao Y. Interactions between biofilms and PFASs in aquatic ecosystems: Literature exploration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167469. [PMID: 37778566 DOI: 10.1016/j.scitotenv.2023.167469] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) have been detected in most aquatic environments worldwide and are referred to as "forever chemicals" because of their extreme chemical and thermal stability. Biofilms, as basic aquatic bioresources, can colonize various substratum surfaces. Biofilms in the aquatic environment have to interact with the ubiquitous PFASs and have significant implications for both their behavior and destiny, which are still poorly understood. Here, we have a preliminary literature exploration of the interaction between PFASs and biofilms in the various aquatic environments and expect to provide some thoughts on further study. In this review, the biosorption properties of biofilms on PFASs and possible mechanisms are presented. The complex impact of PFASs on biofilm systems was further discussed in terms of the composition and electrical charges of extracellular polymeric substances, intracellular microbial communities, and overall contaminant purification functions. Correspondingly, the effects of biofilms on the redistribution of PFASs in the aqueous environment were analyzed. Finally, we propose that biofilm after adsorption of PFASs is a unique ecological niche that not only reflects the contamination level of PFASs in the aquatic environment but also offers a possible "microbial pool" for PFASs biodegradation. We outline existing knowledge gaps and potential future efforts for investigating how PFASs interact with biofilms in aquatic ecosystems.
Collapse
Affiliation(s)
- Bin Ji
- School of Civil Engineering, Yantai University, Yantai 264005, PR China.
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China.
| |
Collapse
|
5
|
Priyadarshanee M, Das S. Bacterial extracellular polymeric substances: Biosynthesis and interaction with environmental pollutants. CHEMOSPHERE 2023; 332:138876. [PMID: 37164199 DOI: 10.1016/j.chemosphere.2023.138876] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/12/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
Extracellular polymeric substances (EPS) are highly hydrated matrices produced by bacteria, containing various polymers such as polysaccharides, proteins, lipids, and DNA. Extracellular polymer concentrations, ions, and functional groups provide physical stability to the EPS. Constituents of EPS form the three-dimensional architecture and help acquire nutrition for the bacteria. Structural and functional diversity of the extracellular polymer depends on the specific glycosyltransferases, polymerase and transporter proteins. These enzymes are encoded by specific genes present in operons such as crd, alg, wca, and gum reported in Agrobacterium, Pseudomonas, Enterobacteriaceae, and Xanthomonas. The operons regulate the biosynthesis of extracellular polymers such as curdlan, alginate, colonic acid, and xanthan, respectively. Various functional groups in the EPS, such as carbonyl, hydroxyl, phosphoryl, and amide, provide the sorption site for interaction with environmental pollutants. Hydrophobic interactions and coordinate bonds mainly dominate the binding of EPS with environmental pollutants. EPS binds, emulsifies, and solubilizes the organic compounds, enhancing the degradation process. EPS binds with heavy metals through complexation, surface adsorption, precipitation, and ion exchange mechanisms. The biodegradability efficiency and nontoxicity properties of EPS make it an excellent biopolymer for decontaminating environmental pollutants. This review summarizes an overview of the biosynthetic mechanisms and interaction of the bacterial extracellular polymer with environmental pollutants. Interaction mechanisms of pollutants with EPS and EPS-mediated bioremediation will help develop removal applications. Moreover, understanding the genes responsible for EPS production, and implementation of new genetic methodology can be helpful for the enhanced biosynthesis of EPS to control pollution by sequestrating more environmental pollutants.
Collapse
Affiliation(s)
- Monika Priyadarshanee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|