1
|
Gao M, Zheng G, Lei C, Cui R, Chen J, Lou J, Sun L, Lu T, Qian H. Machine learning models reveal how polycyclic aromatic hydrocarbons influence environmental bacterial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177032. [PMID: 39447913 DOI: 10.1016/j.scitotenv.2024.177032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/02/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are harmful and widespread pollutants in the environment, posing an ecological threat. However, exploring the influence of PAHs on environmental bacterial communities in different habitats (soil, water, and sediment) remains a major challenge. We collected and reanalyzed 1924 16S rRNA sequencing samples to determine the effects of PAHs on bacterial communities in different habitats and used machine learning to predict potential degrading bacteria. It was found that PAHs had substantial effects on the bacterial community, and that the bacterial community structure changed differently in different habitats. PAH contamination decreased the relative abundance of Proteobacteria in the soil (16.3 %) and sediment (10.1 %), whereas the abundance of Proteobacteria in water increased by 20.2 %. Among the tested models, the random forest model best identified the effects of PAHs on bacterial groups, with an accuracy of 99.51 % for soil, 97.72 % for sediment, and 100 % for water at the genus level. Using the random forest model, we identified 70 biomarkers that respond to PAHs, including potentially degrading microorganisms such as A4b, Bacillus, Flavobacterium and Polynucleobacter. Furthermore, PAH contamination did not significantly alter the functions of bacterial communities in the environment. This study provides a candidate strain set for future screening of PAH-degrading bacteria and contributes to the study of the adaptability of engineered PAH-degrading bacteria to the environment.
Collapse
Affiliation(s)
- Mingyu Gao
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Guogang Zheng
- Zhejiang Anglikang Pharmaceutical Cooperation, Shengzhou 312400, PR China
| | - Chaotang Lei
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Rui Cui
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Jiajie Lou
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| |
Collapse
|
2
|
Hepditch SLJ, Ahad JME, Martel R, To TA, Gutierrez-Villagomez JM, Larocque È, Vander Meullen IJ, Headley JV, Xin Q, Langlois VS. Behavior and toxicological impact of spilled diluted bitumen and conventional heavy crude oil in the unsaturated zone. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124875. [PMID: 39233269 DOI: 10.1016/j.envpol.2024.124875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Demand for unconventional crude oils continues to drive the production of diluted bitumen (dilbit) within Western Canada, promoting increased transport volumes across the extensive 700,000 km pipeline system of Canada and the USA. Despite this vast extent of terrestrial transport, the current understanding of the behavior and fate of spilled dilbit within shallow groundwater systems is limited. To this end, oil spill experiments with a dilbit (Cold Lake Blend) and a physicochemically similar conventional heavy crude oil (Conventional Heavy Blend) were conducted for 104 days in large soil columns (1 m height × 0.6 m diameter) engineered to model contaminant transport in the unsaturated (vadose) zone. Around two-fold greater concentrations and 6-41 % faster rates of vadose zone transport of benzene, toluene, ethylbenzene and xylenes (BTEX) and polycyclic aromatic compounds (PACs) were observed in the dilbit- compared to conventional heavy crude-contaminated columns. As determined by Orbitrap mass spectrometry, the OxSx species abundances in the acid extractable organics (AEOs) fraction of column leachate from both oil types increased over time, ostensibly due to microbial degradation of petroleum. Bioaccumulation of petroleum constituents in fathead minnow (Pimephales promelas) larvae exposed to contaminated leachate was confirmed through the induction of developmental malformations lasting up to 34 days and increased abundance of cyp1a mRNA observed throughout the experiment. Toxicity was comparable between the two oils but could not be fully attributed to metals, BTEX, PACs or AEOs, implying the presence of uncharacterized teratogens capable of being transported within the vadose zone following terrestrial dilbit and conventional heavy crude oil surface spills.
Collapse
Affiliation(s)
- Scott L J Hepditch
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Québec, QC, G1K 9A9, Canada; Centre d'expertise en analyse environnementale du Québec, ministère de l'Environnement et de la lutte contre les changements climatiques, de la faune et des forêts (MELCCFP), Québec, QC, H7C 2M7, Canada
| | - Jason M E Ahad
- Geological Survey of Canada, Natural Resources Canada (NRCan), Québec, QC, G1K 9A9, Canada.
| | - Richard Martel
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Québec, QC, G1K 9A9, Canada
| | - Tuan Anh To
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Québec, QC, G1K 9A9, Canada
| | | | - Ève Larocque
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Québec, QC, G1K 9A9, Canada
| | - Ian J Vander Meullen
- Environment and Climate Change Canada, Watershed Hydrology and Ecology Research Division, National Hydrology Research Center, 11 Innovation Boulevard, Saskatoon, Saskatchewan, S7N 3H5, Canada; Department of Civil, Geological and Environmental Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada
| | - John V Headley
- Environment and Climate Change Canada, Watershed Hydrology and Ecology Research Division, National Hydrology Research Center, 11 Innovation Boulevard, Saskatoon, Saskatchewan, S7N 3H5, Canada
| | - Qin Xin
- Natural Resources Canada (NRCan), CanmetENERGY, 1 Oil Patch Drive, Devon, AB, T9G 1A8, Canada
| | - Valerie S Langlois
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Québec, QC, G1K 9A9, Canada
| |
Collapse
|
3
|
Heshka NE, Ridenour C, Saborimanesh N, Xin Q, Farooqi H, Brydie J. A review of oil spill research in Canadian Arctic marine environments. MARINE POLLUTION BULLETIN 2024; 209:117275. [PMID: 39566148 DOI: 10.1016/j.marpolbul.2024.117275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024]
Abstract
The Canadian Arctic is a large and diverse geographic area that encompasses a wide variety of environmental conditions and ecosystems. Over recent decades, marine transportation has increased across the Arctic and, as a result, so has the likelihood of an oil spill. The study of oil spills in the Arctic presents unique challenges compared to temperate marine environments, due to remoteness, cold temperatures and the presence of snow and ice throughout much of the year. This review summarizes and discusses the fate of oil in the Canadian Arctic. A brief introduction to the Canadian Arctic and sources of potential petroleum spills is provided, followed by discussions of the behaviour of oil in ice and freezing temperatures, oil-sediment interactions, and the weathering and natural remediation of oil under Arctic conditions. A summary of perspectives concludes the review, with emphasis on possible areas of future work to address research gaps.
Collapse
Affiliation(s)
- Nicole E Heshka
- Natural Resources Canada, CanmetENERGY, 1 Oil Patch Drive, Devon, Alberta T9G 1A8, Canada.
| | - Christine Ridenour
- Natural Resources Canada, CanmetENERGY, 1 Oil Patch Drive, Devon, Alberta T9G 1A8, Canada
| | - Nayereh Saborimanesh
- Natural Resources Canada, CanmetENERGY, 1 Oil Patch Drive, Devon, Alberta T9G 1A8, Canada
| | - Qin Xin
- Natural Resources Canada, CanmetENERGY, 1 Oil Patch Drive, Devon, Alberta T9G 1A8, Canada
| | - Hena Farooqi
- Natural Resources Canada, CanmetENERGY, 1 Oil Patch Drive, Devon, Alberta T9G 1A8, Canada
| | - James Brydie
- Natural Resources Canada, CanmetENERGY, 1 Oil Patch Drive, Devon, Alberta T9G 1A8, Canada
| |
Collapse
|
4
|
Quiñones-Cerna C, Castañeda-Aspajo A, Tirado-Gutierrez M, Salirrosas-Fernández D, Rodríguez-Soto JC, Cruz-Monzón JA, Hurtado-Butrón F, Ugarte-López W, Gutiérrez-Araujo M, Quezada-Alvarez MA, Gálvez-Rivera JA, Esparza-Mantilla M. Efficacy of Indigenous Bacteria in the Biodegradation of Hydrocarbons Isolated from Agricultural Soils in Huamachuco, Peru. Microorganisms 2024; 12:1896. [PMID: 39338570 PMCID: PMC11434379 DOI: 10.3390/microorganisms12091896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Pollution from crude oil and its derivatives poses a serious threat to human health and ecosystems, with accidental spills causing substantial damage. Biodegradation, using microorganisms to break down these contaminants, presents a promising and cost-effective solution. Exploring and utilizing new bacterial strains from underexplored habitats could improve remediation efforts at contaminated sites. This study aimed to evaluate the hydrocarbon biodegradation capacity of bacteria isolated from agricultural soils in Huamachuco, Peru. Soil samples from Oca crops were collected and bacteria were isolated. Biodegradation assays were conducted using diesel as the sole carbon source in the Bushnell Haas Mineral medium. Molecular characterization of the 16S rRNA gene identified four strains. Diesel biodegradation assays at 1% concentration were performed under agitation conditions at 150 rpm and 30 °C, and monitored on day 10 by measuring cellular biomass (OD600), with hydrocarbons analyzed by gas chromatography. The results showed Pseudomonas protegens (PROM2) achieved the highest efficiency in removing total hydrocarbons (91.5 ± 0.7%). Additionally, Pseudomonas citri PROM3 and Acinetobacter guillouiae ClyRoM5 also demonstrated high capacity in removing several individual hydrocarbons. Indigenous bacteria from uncontaminated agricultural soils present a high potential for hydrocarbon bioremediation, offering an ecological and effective solution for soil decontamination.
Collapse
Affiliation(s)
- Claudio Quiñones-Cerna
- Laboratorio de Biotecnología e Ingeniería Genética, Facultad de Ciencias Biológicas, Universidad Nacional de Trujillo, Juan Pablo II Av., Trujillo 13008, Peru
| | - Alina Castañeda-Aspajo
- Departamento de Ingeniería Ambiental, Facultad de Ingeniería Química, Universidad Nacional de Trujillo, Juan Pablo II Av., Trujillo 13008, Peru; (A.C.-A.); (M.T.-G.); (W.U.-L.)
| | - Marycielo Tirado-Gutierrez
- Departamento de Ingeniería Ambiental, Facultad de Ingeniería Química, Universidad Nacional de Trujillo, Juan Pablo II Av., Trujillo 13008, Peru; (A.C.-A.); (M.T.-G.); (W.U.-L.)
| | - David Salirrosas-Fernández
- Laboratorio de Citometría, Facultad de Ciencias Biológicas, Universidad Nacional de Trujillo, Juan Pablo II Av., Trujillo 13008, Peru; (D.S.-F.); (J.C.R.-S.); (M.G.-A.)
| | - Juan Carlos Rodríguez-Soto
- Laboratorio de Citometría, Facultad de Ciencias Biológicas, Universidad Nacional de Trujillo, Juan Pablo II Av., Trujillo 13008, Peru; (D.S.-F.); (J.C.R.-S.); (M.G.-A.)
| | - José Alfredo Cruz-Monzón
- Departamento de Química, Facultad de Ingeniería Química, Universidad Nacional de Trujillo, Juan Pablo II Av., Trujillo 13008, Peru;
| | - Fernando Hurtado-Butrón
- Laboratorio Multidisciplinario de Nanociencia y Nanotecnología “Oswaldo Sánchez Rosales”, Facultad de Ciencias Físicas y Matemáticas, Universidad Nacional de Trujillo, Juan Pablo II Av., Trujillo 13008, Peru;
| | - Wilmer Ugarte-López
- Departamento de Ingeniería Ambiental, Facultad de Ingeniería Química, Universidad Nacional de Trujillo, Juan Pablo II Av., Trujillo 13008, Peru; (A.C.-A.); (M.T.-G.); (W.U.-L.)
| | - Mayra Gutiérrez-Araujo
- Laboratorio de Citometría, Facultad de Ciencias Biológicas, Universidad Nacional de Trujillo, Juan Pablo II Av., Trujillo 13008, Peru; (D.S.-F.); (J.C.R.-S.); (M.G.-A.)
| | - Medardo Alberto Quezada-Alvarez
- Laboratorio de Investigación y Desarrollo en Ciencias Ambientales, Facultad de Ingeniería Química, Universidad Nacional de Trujillo, Juan Pablo II Av., Trujillo 13008, Peru;
| | - Julieta Alessandra Gálvez-Rivera
- Escuela Profesional de Ciencias Biológicas, Facultad de Ciencias, Universidad Nacional de Piura, Juan Pablo II Av., Trujillo 13008, Peru;
| | | |
Collapse
|
5
|
Hepditch SLJ, Gutierrez-Villagomez JM, To TA, Larocque E, Xin Q, Heshka N, Vander Meulen I, Headley JV, Dettman HD, Triffault-Bouchet G, Ahad JME, Langlois VS. Aquatic toxicity and chemical fate of diluted bitumen spills in freshwater under natural weathering. ENVIRONMENT INTERNATIONAL 2024; 190:108944. [PMID: 39151269 DOI: 10.1016/j.envint.2024.108944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Increasing global demands for oils are fueling the production of diluted bitumen (DB) from Canada's oil sands region. More weathered than conventional crude (CC) oils, Alberta bitumen is often diluted with lighter petroleum oils to reduce density and viscosity to meet pipeline specifications for transportation. Being a heavy oil product that is transported in large volumes across Canada and the USA, there has been interest to compare its behavior and toxicity characteristics when spilled to those of CC. To determine the influence of environmental weathering upon DB following a freshwater spill, we conducted separate controlled spills of Cold Lake Blend DB and Mixed Sweet Blend light CC oil in a mesocosm spill-tank system at 24 °C with wave-action for 56 days. DB-contaminated waters remained acutely lethal for a period of 14 days to early life stage fathead minnows (Pimephales promelas) exposed during embryologic development, while CC was lethal for 1 day. However, concentrations of mono- and polycyclic aromatic compounds, often claimed to be principally responsible for the acute and chronic toxicity of crude oils, were consistently higher in CC water compared to DB. Elevated aromatic concentrations in CC water correlated with higher prevalences of developmental malformations, reduced heart and growth rates, and impacts on the aryl hydrocarbon receptor pathway. Organic acids were measured over the course of the studies and O2 containing naphthenic acids were present at greater relative abundances in DB- compared to CC-contaminated water, with their attenuation correlating with reduced acute and sublethal toxicity. Furthermore, organic acid degradation products accumulated with time and likely contributed to the consistently sublethal toxicity of the weathered oils throughout the experiment. Improved characterization of the fractions including organic acids and those organic compounds found within the unresolved complex mixture of fresh and weathered crude oils is necessary to adequately understand and prepare for the risks that accidental petroleum spills pose to aquatic resources.
Collapse
Affiliation(s)
- S L J Hepditch
- Institut national de la recherche scientifique (INRS), 490 rue de la Couronne, Québec City, QC G1K 9A9, Canada; Centre d'expertise en analyse environnementale du Québec, ministère de l'Environnement et de la lutte contre les changements climatiques, de la faune et des forêts (MELCCFP), Québec City, QC H7C 2M7, Canada; Geological Survey of Canada, Natural Resources Canada (NRCan), Québec City, QC G1K 9A9, Canada
| | - J M Gutierrez-Villagomez
- Institut national de la recherche scientifique (INRS), 490 rue de la Couronne, Québec City, QC G1K 9A9, Canada
| | - T A To
- Institut national de la recherche scientifique (INRS), 490 rue de la Couronne, Québec City, QC G1K 9A9, Canada
| | - E Larocque
- Institut national de la recherche scientifique (INRS), 490 rue de la Couronne, Québec City, QC G1K 9A9, Canada
| | - Q Xin
- Natural Resources Canada (NRCan), CanmetENERGY, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada
| | - N Heshka
- Natural Resources Canada (NRCan), CanmetENERGY, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada
| | - I Vander Meulen
- Environment and Climate Change Canada, Watershed Hydrology and Ecology Research Division, National Hydrology Research Center, 11 Innovation Boulevard, Saskatoon, Saskatchewan S7N 3H5, Canada
| | - J V Headley
- Environment and Climate Change Canada, Watershed Hydrology and Ecology Research Division, National Hydrology Research Center, 11 Innovation Boulevard, Saskatoon, Saskatchewan S7N 3H5, Canada
| | - H D Dettman
- Natural Resources Canada (NRCan), CanmetENERGY, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada
| | - G Triffault-Bouchet
- Centre d'expertise en analyse environnementale du Québec, ministère de l'Environnement et de la lutte contre les changements climatiques, de la faune et des forêts (MELCCFP), Québec City, QC H7C 2M7, Canada
| | - J M E Ahad
- Geological Survey of Canada, Natural Resources Canada (NRCan), Québec City, QC G1K 9A9, Canada
| | - V S Langlois
- Institut national de la recherche scientifique (INRS), 490 rue de la Couronne, Québec City, QC G1K 9A9, Canada.
| |
Collapse
|
6
|
Ajaero C, Vander Meulen I, Heshka NE, Xin Q, McMartin DW, Peru KM, Chen H, McKenna AM, Reed K, Headley JV. Evaluations of Weathering of Polar and Nonpolar Petroleum Components in a Simulated Freshwater-Oil Spill by Orbitrap and Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2024; 38:6753-6763. [PMID: 38654763 PMCID: PMC11034502 DOI: 10.1021/acs.energyfuels.3c04994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
The comprehensive chemical characterization of crude oil is important for the evaluation of the transformation and fate of components in the environment. Molecular-level speciation of naphthenic acid fraction compounds (NAFCs) was investigated in a mesoscale spill tank using both negative-ion electrospray ionization (ESI) Orbitrap mass spectrometry (MS) and positive-ion atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (APPI-FT-ICR-MS). Both ionization techniques are coupled to high-resolution mass spectrometric detectors (ESI: Orbitrap MS; APPI: FT-ICR-MS at 9.4 T), enabling insight into the behavior and fate of petrogenic compounds during a simulated freshwater crude oil spill. Negative-ion ESI Orbitrap-MS reveals that oxygen-containing (Ox) classes are detected early in the spill, whereby species with more oxygen per molecule evolve later in the simulated spill. The O2-containing species gradually decreased in relative abundance, while O3 and O4 species increased in relative abundance throughout the simulated spill, which could correspond to a relative degree of oxygen incorporation. Nonpolar speciation by positive-ion APPI 9.4 T FT-ICR-MS allowed for the identification of water-soluble nonpolar and less polar acidic species. Molecular-level graphical representation of elemental compositions derived from simulated spill water-soluble and oil-soluble species suggest that biological activity is the primary degradation mechanism and that biodegradation was the dominant mechanism based on the negative-ion ESI Orbitrap-MS results.
Collapse
Affiliation(s)
- Chukwuemeka Ajaero
- Environment
and Climate Change Canada, Watershed Hydrology and Ecology Research
Division, National Hydrology Research Center, 11 Innovation Boulevard, Saskatoon, Saskatchewan S7N 3H5, Canada
- Department
of Geography and Environment, University
of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
| | - Ian Vander Meulen
- Environment
and Climate Change Canada, Watershed Hydrology and Ecology Research
Division, National Hydrology Research Center, 11 Innovation Boulevard, Saskatoon, Saskatchewan S7N 3H5, Canada
- Department
of Civil, Geological and Environmental Engineering,
57 Campus Drive, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A9, Canada
| | - Nicole E. Heshka
- CanmetENERGY
Devon, Natural Resources Canada, 1 Oil Patch Drive, Devon, Alberta T9G 1A8, Canada
| | - Qin Xin
- CanmetENERGY
Devon, Natural Resources Canada, 1 Oil Patch Drive, Devon, Alberta T9G 1A8, Canada
| | - Dena W. McMartin
- Department
of Geography and Environment, University
of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada
- Department
of Civil, Geological and Environmental Engineering,
57 Campus Drive, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A9, Canada
| | - Kerry M. Peru
- Environment
and Climate Change Canada, Watershed Hydrology and Ecology Research
Division, National Hydrology Research Center, 11 Innovation Boulevard, Saskatoon, Saskatchewan S7N 3H5, Canada
| | - Huan Chen
- National
High Field Magnet Laboratory, Florida State
University, 1800 E. Paul
Dirac Dr.,Tallahassee, Florida 32306, United States
| | - Amy M. McKenna
- National
High Field Magnet Laboratory, Florida State
University, 1800 E. Paul
Dirac Dr.,Tallahassee, Florida 32306, United States
- Soil
and
Crop Sciences, Colorado State University, 301 University Ave., Fort Collins, Colorado 80523, United States
| | - Kiaura Reed
- Department
of Biology, College of Science and Technology, Florida Agricultural and Mechanical University, 1601 S. Martin Luther King Jr Blvd, Tallahassee, Florida 32307 United States
| | - John V. Headley
- Environment
and Climate Change Canada, Watershed Hydrology and Ecology Research
Division, National Hydrology Research Center, 11 Innovation Boulevard, Saskatoon, Saskatchewan S7N 3H5, Canada
| |
Collapse
|
7
|
Xin Q, Saborimanesh N, Ridenour C, Farooqi H. Fate, behaviour and microbial response of diluted bitumen and conventional crude spills in a simulated warm freshwater environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123224. [PMID: 38159633 DOI: 10.1016/j.envpol.2023.123224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Diluted bitumen (DB), one of the most transported unconventional crude oils in Canada's pipelines, raises public concerns due to its potential spillage into freshwater environments. This study aimed to compare the fate and behaviour of DB versus conventional crude (CC) in a simulated warm freshwater environment. An equivalent of 10 L of either DB or CC was spilled into 1200 L of North Saskatchewan River (NSR) water containing natural NSR sediment (2.4 kg) in a mesoscale spill tank and its fate and behaviour at air/water temperatures of 18 °C/24 °C were monitored for 56 days. Oil mass distribution analysis showed that 42.3 wt % of CC and 63.6 wt% of DB resided in the oil slicks at the end of 56-day tests, consisting mainly high molecular weight (HMW) compounds (i.e., resins and asphaltenes). The lost oil contained mainly low molecular weight (LMW) compounds (i.e., light saturates and some aromatics) into the atmosphere, water column, and sediment through collective weathering processes. Notably, weathered CC emulsified with water and remained floating until the end, while the weathered DB mat started to lose its buoyancy after 24 days under quiescent conditions and resurfaced once waves were applied. Analysis of the microbial communities of water pre- and post-spills revealed the replacement of indigenous microbial communities with hydrocarbon-degrading species. Exposure to CC reduced the microbial diversity by 12%, while exposure to DB increased the diversity by 10%. During the early stages of the spill (up to Day 21), most dominant species were positively correlated with the benzene, toluene, ethylbenzene, and xylenes (BTEX) content or polycyclic aromatic hydrocarbon (PAH) content of the water column, while the dominant species at the later stages (Days 21-56) of the spill were negatively correlated with BTEX or PAH content and positively correlated with the total organic carbon (TOC) content in waters.
Collapse
Affiliation(s)
- Qin Xin
- Natural Resources Canada, CanmetENERGY, 1 Oil Patch Drive, Devon, Alberta, T9G 1A8, Canada.
| | - Nayereh Saborimanesh
- Natural Resources Canada, CanmetENERGY, 1 Oil Patch Drive, Devon, Alberta, T9G 1A8, Canada
| | - Christine Ridenour
- Natural Resources Canada, CanmetENERGY, 1 Oil Patch Drive, Devon, Alberta, T9G 1A8, Canada
| | - Hena Farooqi
- Natural Resources Canada, CanmetENERGY, 1 Oil Patch Drive, Devon, Alberta, T9G 1A8, Canada
| |
Collapse
|
8
|
Hounjet LJ, Stoyanov SR, Chao D, Hristova E. Evaluating crude oil distribution tendencies in a multi-phase aquatic system: Effects of oil type, water chemistry, and mineral sediment. MARINE POLLUTION BULLETIN 2023; 196:115607. [PMID: 37826907 DOI: 10.1016/j.marpolbul.2023.115607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/05/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Planning for effective response to crude oil spills into water depends on evidence of oil behavior, including its tendency to become distributed throughout an aquatic system. An improved laboratory method is employed to quantitatively assess crude oil distribution among different layers that form after mixing within a multi-phase system of water and sediment. Mixtures of conventional crude oil or diluted bitumen with different water types in the presence or absence of mineral sediment are first mixed by a standard end-over-end rotary agitation protocol. After a settling period, each mixture's visibly distinct floating, surface oil (e.g., slick or emulsion), subsurface bulk water, and bottom layers are then separated. Finally, the masses of oil, water, and sediment constituting each layer are isolated, quantified, and compared. The novel results reveal how component properties affect oil distribution among layers to inform spill behavior models, risk assessments, and response plans, including applications of spill-treating agents.
Collapse
Affiliation(s)
- Lindsay J Hounjet
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, Alberta T9G 1A8, Canada.
| | - Stanislav R Stoyanov
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, Alberta T9G 1A8, Canada
| | - Derek Chao
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, Alberta T9G 1A8, Canada
| | - Evgeniya Hristova
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, Alberta T9G 1A8, Canada
| |
Collapse
|
9
|
Stoyanovich SS, Saunders LJ, Yang Z, Hanson ML, Hollebone BP, Orihel DM, Palace V, Rodriguez-Gil JL, Mirnaghi FS, Shah K, Blais JM. Chemical Weathering Patterns of Diluted Bitumen Spilled into Freshwater Limnocorrals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37267462 DOI: 10.1021/acs.est.2c05468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Due to the sudden nature of oil spills, few controlled studies have documented how oil weathers immediately following accidental release into a natural lake environment. Here, we evaluated the weathering patterns of Cold Lake Winter Blend, a diluted bitumen (dilbit) product, by performing a series of controlled spills into limnocorrals installed in a freshwater lake in Northern Ontario, Canada. Using a regression-based design, we added seven different dilbit volumes, ranging from 1.5 to 180 L, resulting in oil-to-water ratios between 1:71,000 (v/v) and 1:500 (v/v). We monitored changes in the composition of various petroleum hydrocarbons (PHCs), including n-alkanes, polycyclic aromatic hydrocarbons (PAHs), and oil biomarkers in dilbit over time, as it naturally weathered for 70 days. Depletion rate constants (kD) of n-alkanes and PAHs ranged from 0.0009 to 0.41 d-1 and 0.0008 to 0.38 d-1, respectively. There was no significant relationship between kD and spill volume, suggesting that spill size did not influence the depletion of petroleum hydrocarbons from the slick. Diagnostic ratios calculated from concentrations of n-alkanes, isoprenoids, and PAHs indicated that evaporation and photooxidation were major processes contributing to dilbit weathering, whereas dissolution and biodegradation were less important. These results demonstrate the usefulness of large scale field studies carried out under realistic environmental conditions to elucidate the role of different weathering processes following a dilbit spill.
Collapse
Affiliation(s)
| | | | - Zeyu Yang
- Emergencies Science and Technology Section, Environment and Climate Change Canada, Ottawa, Ontario K1V 1C7, Canada
| | - Mark L Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Bruce P Hollebone
- Emergencies Science and Technology Section, Environment and Climate Change Canada, Ottawa, Ontario K1V 1C7, Canada
| | - Diane M Orihel
- Department of Biology and School of Environmental Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Vince Palace
- International Institute for Sustainable Development, Experimental Lakes Area, 111 Lombard Avenue, Suite 325, Winnipeg, Manitoba R3N 0T4, Canada
| | - Jose L Rodriguez-Gil
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- International Institute for Sustainable Development, Experimental Lakes Area, 111 Lombard Avenue, Suite 325, Winnipeg, Manitoba R3N 0T4, Canada
| | - Fatemeh S Mirnaghi
- Emergencies Science and Technology Section, Environment and Climate Change Canada, Ottawa, Ontario K1V 1C7, Canada
| | - Keval Shah
- Emergencies Science and Technology Section, Environment and Climate Change Canada, Ottawa, Ontario K1V 1C7, Canada
| | | |
Collapse
|