1
|
Chand N, Krause S, Prajapati SK. The potential of microplastics acting as vector for triclosan in aquatic environments. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 284:107381. [PMID: 40311399 DOI: 10.1016/j.aquatox.2025.107381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/14/2025] [Accepted: 04/22/2025] [Indexed: 05/03/2025]
Abstract
There is increased evidence of the co-occurrence of microplastics (MPs) with other co-pollutants in surface water globally, leading to ecological and environmental concerns. The risks and toxicity of co-occurring pollutants largely depend on the mechanisms controlling the activation of their various sources, their fate and transport in different environmental media. Due to their size-specific surface area, MPs in the environment can have a strong affinity for interactions with hydrophobic compounds and have a high sorption capacity for various emerging contaminants (ECs). ECs like the antibacterial and antifungal agent such as Triclosan (TCS) are persistent in the environment. Moreover, TCS in aquatic environments has a low solubility, and high octanol-water partitioning co-efficient which raises the possibility of TCS to interact with other environmental pollutants such as MPs. The interactions of TCS with MPs in the environment are controlled by a range of mechanism such as hydrogen bonding, hydrophobic interactions, π-π interactions as well as electrostatic interactions. The interacting behaviour of these driving forces needs to be fully understood to determine how the co-occurrence of TCS and MPs may lead to adverse effects on the biological functioning of aquatic ecosystems. Hence, here we conduct a systematic review of the current state-of-the-art and synthesize the available knowledge of how MPs can act as vectors for TCS in aquatic environments. This review reveals MP and TCS interactions in aquatic ecosystems, their individual and collective fate, and toxicological impacts on aquatic organisms, evidencing that MPs can act as potential vectors for transporting TCS across different trophic levels. This review also reveals critical limitations in the research of the combined toxicity and interactions of co-occurring MPs and TCS. Based on the rigorous review of the current knowledge base, we propose that multifactorious investigations along with long-terms monitoring are crucial to fully understand the impacts of co-occurring MPs and TCS in aquatic systems to underline future mitigation policies and management plans.
Collapse
Affiliation(s)
- Naveen Chand
- Environment and Biofuel Research Lab (EBRL), Hydro and Renewable Energy Department, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand - 247667 India.
| | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK; LEHNA- Laboratoire d'ecologie des hydrosystemes naturels et anthropises, University of Lyon, Darwin C & Forel, 3-6 Rue Raphaël Dubois, 69622 Villeurbanne, France; BISCA - Birmingham Institute of Sustainability and Climate Action, Birmingham, UK.
| | - Sanjeev Kumar Prajapati
- Environment and Biofuel Research Lab (EBRL), Hydro and Renewable Energy Department, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand - 247667 India.
| |
Collapse
|
2
|
Ullah Z, Peng L, Lodhi AF, Kakar MU, Mehboob MZ, Iqbal I. The threat of microplastics and microbial degradation potential; a current perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177045. [PMID: 39447905 DOI: 10.1016/j.scitotenv.2024.177045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Microplastics in marine environments come from various sources, and over the years, their buildup in marine environments suggests an inevitable need for the safe mitigation of plastic pollution. Microplastics are one of the chief and hazardous components of marine pollution, as they are transferred through the food chain to different trophic levels, affecting living organisms. They are also a source of transfer for pathogenic organisms. Upon transfer to humans, several toxic effects can occur. This review aims to assess the accumulation of microplastics in marine environments globally, the threat posed to humans, and the biodegradation potential of bacteria and fungi for future mitigation strategies. The versatility of bacteria and fungi in the biodegradation of different types of plastics has been discussed, with a focus on the microbial majority that has been cultivated in labs from the marine environment. We also propose that the exploration of yet-to-be-cultivated microbial majority can be a way forward for employing future strategies to mitigate microplastics.
Collapse
Affiliation(s)
- Zahid Ullah
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, People's Republic of China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, People's Republic of China
| | - Licheng Peng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, People's Republic of China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, People's Republic of China.
| | - Adil Farooq Lodhi
- Department of Microbiology, Faculty of Biological & Health Sciences, Hazara University, Mansehra, Pakistan
| | - Mohib Ullah Kakar
- Faculty of Marine Sciences, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Uthal 90150, Balochistan, Pakistan
| | - Muhammad Zubair Mehboob
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater 74075, OK, USA
| | - Imran Iqbal
- Department of Pathology, NYU Grossman School of Medicine, New York University Langone Health, New York, NY 10016, USA
| |
Collapse
|
3
|
Pyl M, Ben Gharbia H, Sdiri K, Oberhänsli F, Friedrich J, Danis B, Metian M. Comparison of biofilm-covered microplastics and sand particles as vectors of PCB-153 to Paracentrotus lividus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107113. [PMID: 39488150 DOI: 10.1016/j.aquatox.2024.107113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/09/2024] [Accepted: 09/30/2024] [Indexed: 11/04/2024]
Abstract
The microplastics (MPs) vector effect of environmental contaminants (such as polychlorinated biphenyls-PCBs) to organism tissues is currently one of the major concerns regarding MPs pollution in the marine environment. The relative importance of MPs as vectors for the bioaccumulation of contaminants to marine organisms compared to other naturally occurring particles has been poorly investigated and never by using biofilm-covered particles. The present study compares the role of biofilm-covered microplastics and sand particles as vectors for the transfer and bioaccumulation of ¹⁴C-PCB-153 into various body compartments of the sea urchin Paracentrotus lividus. After 14 days of exposure, similar transfer efficiency of ¹⁴C-PCB-153 from both types of biofilm-covered particles was obtained (t-test, p-val = 0.43). The particle type was not found to affect the concentration (two-way ANOVA, p-valper dry weight = 0.92, p-valper lipid weight = 0.80) and distribution (two-way ANOVA, p-val = 0.85) of ¹⁴C-PCB-153 among the different body compartments of sea urchins. These findings suggest that biofilm-covered MPs located on the seafloor may act as similar vectors for the bioaccumulation of PCB-153 in sea urchin tissues compared to other biofouled natural particles such as sand. Overall, the outcomes of this present work align with the growing consensus among various research groups that MPs-mediated bioaccumulation of co-contaminants would be negligible compared to natural bioaccumulation pathways in relation to their abundance in the ocean.
Collapse
Affiliation(s)
- Marine Pyl
- Laboratoire de Biologie marine (CP 160/15), Université Libre de Bruxelles, Av. F.D. Roosevelt 50 B-1050 Brussels, Belgium; International Atomic Energy Agency, Marine Environment Laboratories, 4a, Quai Antoine 1er MC-98000, Monaco, Principality of Monaco.
| | - Hela Ben Gharbia
- International Atomic Energy Agency, Marine Environment Laboratories, 4a, Quai Antoine 1er MC-98000, Monaco, Principality of Monaco
| | - Khalil Sdiri
- International Atomic Energy Agency, Marine Environment Laboratories, 4a, Quai Antoine 1er MC-98000, Monaco, Principality of Monaco
| | - François Oberhänsli
- International Atomic Energy Agency, Marine Environment Laboratories, 4a, Quai Antoine 1er MC-98000, Monaco, Principality of Monaco
| | - Jana Friedrich
- International Atomic Energy Agency, Marine Environment Laboratories, 4a, Quai Antoine 1er MC-98000, Monaco, Principality of Monaco
| | - Bruno Danis
- Laboratoire de Biologie marine (CP 160/15), Université Libre de Bruxelles, Av. F.D. Roosevelt 50 B-1050 Brussels, Belgium
| | - Marc Metian
- International Atomic Energy Agency, Marine Environment Laboratories, 4a, Quai Antoine 1er MC-98000, Monaco, Principality of Monaco
| |
Collapse
|
4
|
Mishra S, Ren Y, Sun X, Lian Y, Singh AK, Sharma N, Shikhar KC. Microplastics-biofilm in aquatic ecosystem: Formation, pollutants complexation, greenhouse gas emission and ecotoxicology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122930. [PMID: 39423625 DOI: 10.1016/j.jenvman.2024.122930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/20/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
The omnipresent microplastics (MPs) have gradually become a significant environmental problem due to its adverse consequences for ecological systems. MPs serve as substrates for biofilms colonization, which enhances adsorption of harmful contaminants on MPs surface in the aquatic ecosystem. The present study provides a critical discussion on the mechanism involved in MPs-biofilm formation, microbial colonization and the robust factors influencing the process in the aquatic ecosystem. Subsequently, the impact of MPs-biofilm on adsorption of inorganic and organic contaminants is explored. The ecological significance of MPs-biofilm associated pollutant complex for promoting greenhouse gases (GHGs) emissions from aquatic ecosystem is extensively discussed for understanding the climatic risk. Furthermore, the discussion is extended over ecotoxicological impact of MPs-biofilm on aquatic biodiversity and humans. The protective extracellular polymeric substances secreted by colonised bacteria over MPs during biofilm formation creates sticky MPs surface for heteroaggregates formation with swift adsorption of chemical compounds and microorganisms. MPs with functional aromatic groups facilitate the bacterial adhesion on the surface, but affect formation of biofilm. Alternatively, MPs-biofilm promotes the Mn and Fe hydrous oxides formation that can co-precipitate with heavy metal ions and facilitate in remediation measures. However, MPs biodegradation generates GHGs emission per unit mass, comparably more from freshwater than marine ecosystem. Considering the toxicity, MPs-biofilm induces the oxidative response in fishes, causing painful death and thus, destroys aquatic biodiversity. This study will be useful to address MPs-biofilm associated pollution scenario via trace, test and treat strategy involving future engineering research framework for ecological restoration.
Collapse
Affiliation(s)
- Saurabh Mishra
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; Institute of Water Science and Technology, Hohai University, Nanjing, Jiangsu, 210098, China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Yuling Ren
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Xiaonan Sun
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Yanqing Lian
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; Institute of Water Science and Technology, Hohai University, Nanjing, Jiangsu, 210098, China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, Jiangsu, China.
| | - Anurag Kumar Singh
- Transport Planning and Environment Division, CSIR-Central Road Research Institute, New Delhi, 110025, India
| | - Niraj Sharma
- Transport Planning and Environment Division, CSIR-Central Road Research Institute, New Delhi, 110025, India
| | - K C Shikhar
- Institute of Water Resources and Hydropower, Hohai University, Nanjing, 210098, China
| |
Collapse
|
5
|
Yan X, Chio C, Li H, Zhu Y, Chen X, Qin W. Colonization characteristics and surface effects of microplastic biofilms: Implications for environmental behavior of typical pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173141. [PMID: 38761927 DOI: 10.1016/j.scitotenv.2024.173141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
This paper summarizes the colonization dynamics of biofilms on microplastics (MPs) surfaces in aquatic environments, encompassing bacterial characteristics, environmental factors affecting biofilm formation, and matrix types and characteristics. The interaction between biofilm and MPs was also discussed. Through summarizing recent literatures, it was found that MPs surfaces offer numerous benefits to microorganisms, including nutrient enrichment and enhanced resistance to environmental stress. Biofilm colonization changes the surface physical and chemical properties as well as the transport behavior of MPs. At the same time, biofilms also play an important role in the fragmentation and degradation of MPs. In addition, we also investigated the coexistence level, adsorption mechanism, enrichment, and transformation of MPs by environmental pollutants mediated by biofilms. Moreover, an interesting aspect about the colonization of biofilms was discussed. Biofilm colonization not only had a great effect on the accumulation of heavy metals by MPs, but also affects the interaction between particles and environmental pollutants, thereby changing their toxic effects and increasing the difficulty of MPs treatment. Consequently, further attention and research are warranted to delve into the internal mechanisms, environmental risks, and the control of the coexistence of MPs and biofilms.
Collapse
Affiliation(s)
- Xiurong Yan
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China
| | - Chonlong Chio
- Department of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada
| | - Hua Li
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China
| | - Yuen Zhu
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China; Department of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada.
| | - Xuantong Chen
- Department of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada
| | - Wensheng Qin
- Department of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada.
| |
Collapse
|
6
|
Castaño-Ortiz JM, Romero F, Cojoc L, Barceló D, Balcázar JL, Rodríguez-Mozaz S, Santos LHMLM. Accumulation of polyethylene microplastics in river biofilms and effect on the uptake, biotransformation and toxicity of the antimicrobial triclosan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123369. [PMID: 38253165 DOI: 10.1016/j.envpol.2024.123369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
The interaction of multiple stressors in freshwater ecosystems may lead to adverse effects on aquatic communities and their ecological functions. Microplastics (MPs) are a class of contaminants of emerging concern that can exert both direct and indirect ecotoxicological effects. A growing number of studies have investigated MPs-attached microbial communities, but the interaction between MPs and substrate-associated biofilm (i.e., on natural river substrates, such as stones and sediments) remains poorly studied. In this work, the combined effects of polyethylene MPs (PE-MPs) with a particle size of 10-45 μm (2 mg/L) and the antimicrobial triclosan (TCS) (20 μg/L) were investigated on river biofilms through a short-term exposure experiment (72 h). To the best of authors' knowledge, this is the first time that the combined effects of MPs and chemical contaminants in substrate-associated river biofilms were assessed. Different response parameters were evaluated, including (i) exposure assessment and ii) contaminants effects at different levels: bacterial community composition, antibiotic resistance, extracellular polymeric substances (EPS), photosynthetic efficiency (Yeff), and leucine aminopeptidase activity (LAPA). Triclosan was accumulated in river biofilms (1189-1513 ng/g dw) alongside its biotransformation product methyl-triclosan (20-29 ng/g dw). Also, PE-MPs were detected on biofilms (168-292 MP/cm2), but they had no significant influence on the bioaccumulation and biotransformation of TCS. A moderate shift in bacterial community composition was driven by TCS, regardless of PE-MPs co-exposure (e.g., increased relative abundance of Sphingomonadaceae family). Additionally, Yeff and EPS content were significantly disrupted in TCS-exposed biofilms. Therefore, the most remarkable effects on river biofilms were related to the antimicrobial TCS, whereas single PE-MPs exposure did not alter any of the evaluated parameters. These results demonstrate that biofilms might act as environmental sink of MPs. Although no interaction between PE-MPs and TCS was observed, the possible indirect impact of other MPs-adsorbed contaminants on biofilms should be further assessed.
Collapse
Affiliation(s)
- J M Castaño-Ortiz
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003, Girona, Spain; University of Girona, Girona, Spain
| | - F Romero
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003, Girona, Spain; University of Girona, Girona, Spain; Plant-Soil Interactions group, Agroscope, 8046, Zurich, Switzerland
| | - L Cojoc
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003, Girona, Spain; University of Girona, Girona, Spain
| | - D Barceló
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003, Girona, Spain; University of Girona, Girona, Spain; IDAEA-CSIC, Department of Environmental Chemistry, C/ Jordi Girona 18-26, 08034, Barcelona, Spain
| | - J L Balcázar
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003, Girona, Spain; University of Girona, Girona, Spain
| | - S Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003, Girona, Spain; University of Girona, Girona, Spain
| | - L H M L M Santos
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003, Girona, Spain; University of Girona, Girona, Spain.
| |
Collapse
|
7
|
Ning Z, Zhou S, Li P, Li R, Liu F, Zhao Z, Ren N, Lu L. Exaggerated interaction of biofilm-developed microplastics and contaminants in aquatic environments. CHEMOSPHERE 2023; 345:140509. [PMID: 37871873 DOI: 10.1016/j.chemosphere.2023.140509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Biofilm-developed microplastics (MPs) may serve as important vectors for contaminants in aquatic environments. Elucidating the interactions between biofilm-developed MPs and coexisting contaminants is crucial for understanding the vector capacities of MPs. However, little is known about how the adverse effects of contaminants on MP surface-colonized biofilms influence their vector capacity. In this study, we aimed to investigate the interaction mechanism of biofilms colonizing the surface of MPs with coexisting contaminants using microcosm experiments and biofilm characterization techniques. The results indicated that the biofilm biomass on polystyrene increased over time, providing an additional abundance of oxygen-containing functional groups and promoting Cd accumulation by biofilm-developed polystyrene. Moreover, as a coexisting contaminant, Cd exerted adverse effects such as additional mortality of microorganisms and senescence and MP-colonized biofilm shedding. Consequently, the contaminant vector capacity of biofilm-developed MPs could be mitigated. Thus, the adverse effects of coexisting contaminants on biofilms influenced the ability of MPs to act as vectors in aquatic environments. Neglecting the negative effects of contaminants on biofilms may lead to an overestimation of the contaminant vector capacity of biofilm-developed MPs. This study provides support for more accurate assessment of the interactions between biofilm-developed MPs as vectors and contaminants in aquatic environments.
Collapse
Affiliation(s)
- Zigong Ning
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China; Zhuhai Modern Agriculture Development Center, Zhuhai 519075, China.
| | - Shuang Zhou
- Shenzhen Honglue Research Institute of Innovation Management, Shenzhen 518119, China
| | - Pengxiang Li
- CCTEG Beijing Academy of Land Renovation and Ecological Restoration Technology Co.,Ltd, Beijing 100013, China; Research Center of Land Renovation and Ecological Restoration Engineering in the Coal Industry, Beijing 100013, China
| | - Rong Li
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Feihua Liu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zilong Zhao
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Nanqi Ren
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Lu Lu
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
8
|
Mosquera-Ortega M, Rodrigues de Sousa L, Susmel S, Cortón E, Figueredo F. When microplastics meet electroanalysis: future analytical trends for an emerging threat. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5978-5999. [PMID: 37921647 DOI: 10.1039/d3ay01448g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Microplastics are a major modern challenge that must be addressed to protect the environment, particularly the marine environment. Microplastics, defined as particles ≤5 mm, are ubiquitous in the environment. Their small size for a relatively large surface area, high persistence and easy distribution in water, soil and air require the development of new analytical methods to monitor their presence. At present, the availability of analytical techniques that are easy to use, automated, inexpensive and based on new approaches to improve detection remains an open challenge. This review aims to outline the evolution and novelties of classical and advanced methods, in particular the recently reported electroanalytical detectors, methods and devices. Among all the studies reviewed here, we highlight the great advantages of electroanalytical tools over spectroscopic and thermal analysis, especially for the rapid and accurate detection of microplastics in the sub-micron range. Finally, the challenges faced in the development of automated analytical methods are discussed, highlighting recent trends in artificial intelligence (AI) in microplastics analysis.
Collapse
Affiliation(s)
- Mónica Mosquera-Ortega
- Laboratory of Biosensors and Bioanalysis (LABB), Department of Biological Chemistry and IQUIBICEN, Faculty of Sciences, University of Buenos Aires and CONICET, Ciudad Universitaria, Buenos Aires (1428), Argentina.
- Basic Science Department, Faculty Regional General Pacheco, National Technological University, Argentina
| | - Lucas Rodrigues de Sousa
- Laboratory of Biosensors and Bioanalysis (LABB), Department of Biological Chemistry and IQUIBICEN, Faculty of Sciences, University of Buenos Aires and CONICET, Ciudad Universitaria, Buenos Aires (1428), Argentina.
- Chemistry Institute, Federal University of Goias, Campus Samambaia, Goiania, Brazil
| | - Sabina Susmel
- Department of Agricultural, Food, Environmental and Animal Sciences (Di4A), University of Udine, Via Sondrio 2/A, 33100 Udine, Italy
| | - Eduardo Cortón
- Laboratory of Biosensors and Bioanalysis (LABB), Department of Biological Chemistry and IQUIBICEN, Faculty of Sciences, University of Buenos Aires and CONICET, Ciudad Universitaria, Buenos Aires (1428), Argentina.
- Department of Biosciences and Bioengineering, Indian Institute of Technology at Guwahati, Assam, India
| | - Federico Figueredo
- Laboratory of Biosensors and Bioanalysis (LABB), Department of Biological Chemistry and IQUIBICEN, Faculty of Sciences, University of Buenos Aires and CONICET, Ciudad Universitaria, Buenos Aires (1428), Argentina.
| |
Collapse
|
9
|
Liu P, Dai J, Liu J, Zhang H, Wang G, Guo X, Gao S. Microplastics exhibit lower carrying effects on the bioaccessibility and cytotoxicity of lead than montmorillonite clay particles. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132350. [PMID: 37619279 DOI: 10.1016/j.jhazmat.2023.132350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023]
Abstract
Microplastics (MPs) in the environment are always colonized by microbes, which may have implications for carrying effect of pollutants and exposure risk in organisms. We present the crucial impacts and mechanisms of microbial colonization on the bioaccessibility and toxicity of Pb(II) loaded in disposable box-derived polypropylene (PP) and polystyrene (PS) MPs and montmorillonite (MMT) clay particles. After 45 d incubation, higher biomass measured by crystal violet staining were detected in MMT (1.23) than in PP and PS (0.400 and 0.721) indicating preferential colonization of microbes in clay particles. Microbial colonization further enhanced the sorption ability toward Pb(II), but inhibited the desorption and bioaccessibility of enriched Pb(II) in zebrafish and decreased the toxicity to gastric epithelial cells in an order of MMT > PS ≈ PP. The crucial effects were mainly because microbe-colonized substrates possessed higher oxygen functional groups and specific surface area and exhibited stronger interactions with Pb(II) and digestive component (i.e., pepsin) than pure substrates. This decreased the available soluble pepsin for complexing with sorbed Pb(II). The findings highlight the role of microbial colonization in modulating the exposure risks of artificial and natural substrate-associated pollutants and suggest that the risks of MPs may be overestimated compared to clay particles.
Collapse
Affiliation(s)
- Peng Liu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Jiamin Dai
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Jingxuan Liu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Haiyu Zhang
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Guowei Wang
- School of Environmental Ecology and Biological Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
10
|
Tran TV, Jalil AA, Nguyen TM, Nguyen TTT, Nabgan W, Nguyen DTC. A review on the occurrence, analytical methods, and impact of microplastics in the environment. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104248. [PMID: 37598982 DOI: 10.1016/j.etap.2023.104248] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/08/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Nowadays, microplastic pollution is one of the globally urgent concerns as a result of discharging plastic products into the atmosphere, aquatic and soil environments. Microplastics have average size of less than 5 mm, are non-biodegradable, accumulative, and highly persistent substances. Thousands of tons of microplastics are still accumulated in various environments, posing an enormous threat to human health and living creatures. Here, we review the occurrence and analytical methods, and impact of microplastics in the environments including soil, aquatic media, and atmosphere. Analytical methods including visual observation, Fourier-transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, and pyrolysis-gas chromatography-mass spectrometry were evaluated. We elucidated the environmental and human health impacts of microplastics with emphasis on life malfunction, immune disruption, neurotoxicity, diseases and other tangible health risks. This review also found some shortages of analytical equivalence and/or standardization, inconsistence in sampling collection and limited knowledge of microplastic toxicity. It is hopeful that the present work not only affords a more insight into the potential dangers of microplastics on human health but also urges future researches to establish new standardizations in analytical methods.
Collapse
Affiliation(s)
- Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
| | - A A Jalil
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Tung M Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam
| | - Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av Països Catalans 26, 43007 Tarragona, Spain.
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
| |
Collapse
|
11
|
Yoon S, Lee J, Ko M, Jang T, Lim KS, Kim HO, Ha SJ, Park JA. Adsorption behavior of triclosan on microplastics and their combined acute toxicity to D. magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163290. [PMID: 37030274 DOI: 10.1016/j.scitotenv.2023.163290] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 05/27/2023]
Abstract
Microplastics (MP) have been recently identified as emerging water contaminants in worldwide. Owing to its physicochemical properties, MP have been considered as a vector of other micropollutants and may affect their fate and ecological toxicity in the water environment. In this study, triclosan (TCS), which is a widely-used bactericide, and three frequently found types of MP (PS-MP, PE-MP, and PP-MP) were investigated. The adsorption behavior of TCS on MP was investigated by the effect of reaction time, initial concentration of TCS, and other water chemistry factors. Elovich model and Temkin model are the most fitted well with kinetics and adsorption isotherms, respectively. The maximum TCS adsorption capacities were calculated for PS-MP (9.36 mg/g), PP-MP (8.23 mg/g), and PE-MP (6.47 mg/g). PS-MP had higher affinity to TCS owing to hydrophobic and π-π interaction. The TCS adsorption on PS-MP was inhibited by decreasing concentrations of cations, and increasing concentration of anion, pH, and NOM concentration. At pH 10, only 0.22 mg/g of adsorption capacity was obtained because of the isoelectric point (3.75) of PS-MP and pKa (7.9) of TCS. And almost no TCS adsorption occurred at NOM concentration of 11.8 mg/L. Only PS-MP had no acute toxic effect on D. magna, whereas TCS showed acute toxicity (EC50,24h of TCS = 0.36 ± 0.4 mg/L). Although survival rate increased when TCS with PS-MP due to lower the TCS concentration in solution via adsorption, PS-MP was observed in intestine and body surface of D. magna. Our findings can contribute to understanding the combined potential effects of MP fragment and TCS to aquatic biota.
Collapse
Affiliation(s)
- Soyeong Yoon
- Department of Environmental Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jooyoung Lee
- Department of Environmental Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Mingi Ko
- Department of Environmental Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Taesoon Jang
- Department of Environmental Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kwang Suk Lim
- Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyun-Ouk Kim
- Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Suk-Jin Ha
- Department of Bioengineering, Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jeong-Ann Park
- Department of Environmental Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|