1
|
Monk JR, Hooda PS, Busquets R, Sims D. Occurrence of pharmaceuticals, illicit drugs and PFAS in global surface waters: A meta-analysis-based review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 378:126412. [PMID: 40349823 DOI: 10.1016/j.envpol.2025.126412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/20/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Emerging contaminants (ECs) have been recognized as a new class of water contaminants and their occurrence in surface water is a concern for ecosystems and society. The aim of this study is to provide a comprehensive systematic review based meta-analysis of ECs in global surface waters and associated ecological risks. With a special focus on pharmaceuticals and illicit drugs (PIDs), and per- and polyfluoroalkyl substances (PFAS). Web of Science, Scopus, Google Scholar, and PubMed databases were screened to retrieve articles published between 2013 and 2024. One hundred-one articles comprising 714 datasets spanning 70 PIDs and PFASs in surface water across 46 countries were included in the meta-analysis study. Global PID concentrations ranged from 0.02 ng/L to 82,188 ng/L, with metformin (MFN) having the highest meta-analyzed median concentration of 729.4 ng/L. Antibiotics, analyzed separately revealed sulfonamides as the most detected. Our analysis showed that PIDs (including antibiotics) levels were in the upper quartiles in low-income settings where wastewater treatment is scarce, whereas in most situations where secondary treatments are utilized, their levels tended to remain in the lower quartile. Wastewater treatment beyond a secondary level can reduce these chemicals to levels which present little to no environmental impact. Global PFAS concentrations ranged from 0.01 ng/L to 311.25 ng/L with perfluoroalkylcarboxylic acids (PFCAs) being the most commonly occurring PFAS. Meta-analysis revealed that perflurohexanoic acid (PFHxA) had the highest meta-synthesized median concentration of 3.6 ng/L in surface waters. Environmental risk assessment revealed high risk (HQ ≥ 1) for the following: MFN, acetaminophen (APAP), ibuprofen (IBU), sulfacetamide (SAM) and lomefloxacin (LFX) and moderate risk (HQ ≥ 0.1) for perfluorododecanoic acid (PFDoA), perfluorotetradecanoic acid (PFTeDA) and perfluoroundecanoic acid (PFUnDA).
Collapse
Affiliation(s)
- Joshua R Monk
- School of Engineering and the Environment, Kingston University, London, UK; College of Southern Nevada, Las Vegas, NV, USA
| | - Peter S Hooda
- School of Engineering and the Environment, Kingston University, London, UK.
| | - Rosa Busquets
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, London, UK
| | | |
Collapse
|
2
|
Yunko K, Martyniuk V, Gnatyshyna L, Khoma V, Matskiv T, Tulaidan H, Mykhalyuk O, Karitonas R, Gylyte B, Manusadžianas L, Stoliar O. Alleviation of specific responses in the combined exposure of freshwater mussel Unio tumidus to psychoactive substances and microplastics. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 116:104682. [PMID: 40174756 DOI: 10.1016/j.etap.2025.104682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/23/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Abstract
The environmentally relevant aquatic pollution is associated with the mixtures of xenobiotics, each in the low, picomolar to micromolar concentrations. Among these substances, the combinations of pharmaceuticals and microplastics (MP) have become an increasingly serious threat. The objective of this study was to track the specific and multi-stress responses of swollen river mussels (Unio tumidus) to the psychoactive substances caffeine (Caff) and chlorpromazine (Cpz) under combined exposure with MP. The MP (1 mg·L-1, size 35-50 μm), Caff (20 µg·L-1), Cpz (12 ng·L-1) or their mixture (Mix) were administered to mussels for 14 days. The redox state, enzymes of biotransformation and apoptosis were analysed in the digestive gland. All exposures except Mix caused oxidative injury to lipids and proteins, accompanied by increased GSH and metallothionein levels, suppressed NAD+ and activation of GST (except Mix), and GTPase. MP had the lower particular impact. Specific responses to Caff were activation of Cyp450 (EROD) and cathepsin D, decreased GSH/GSSG ratio and prominent demetallation of metallothionein. The Cpz caused an increase in NADH/NAD+ ratio and caspase-3 inhibition. In the combined exposure, the specific responses to single xenobiotics were alleviated which was confirmed by discriminant analysis. The Mix-group was distinguished by the highest NADH/NAD+ and GSH/GSSG ratios, markedly increased caspase-3 activity accompanied by the decrease of protein carbonyl level and the highest IBR index, attesting to the negative cumulative effect of multi-stress exposure. The vulnerability of mussels to pM concentration of neuroleptic Cpz needs particular attention.
Collapse
Affiliation(s)
- K Yunko
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, Ternopil 46027, Ukraine.
| | - V Martyniuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, Ternopil 46027, Ukraine; Ternopil Ivan Puluj National Technical University, Rus'ka St 56, Ternopil 46001, Ukraine.
| | - L Gnatyshyna
- I. Ya. Horbachevsky Ternopil National Medical University, Maidan Voli 1, Ternopil 46001, Ukraine.
| | - V Khoma
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, Ternopil 46027, Ukraine.
| | - T Matskiv
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, Ternopil 46027, Ukraine; I. Ya. Horbachevsky Ternopil National Medical University, Maidan Voli 1, Ternopil 46001, Ukraine.
| | - H Tulaidan
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, Ternopil 46027, Ukraine.
| | - O Mykhalyuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, Ternopil 46027, Ukraine.
| | - R Karitonas
- Nature Research Centre, Vilnius, Lithuania, Akademijos 2, Vilnius 08412, Lithuania.
| | - B Gylyte
- Nature Research Centre, Vilnius, Lithuania, Akademijos 2, Vilnius 08412, Lithuania.
| | - L Manusadžianas
- Nature Research Centre, Vilnius, Lithuania, Akademijos 2, Vilnius 08412, Lithuania.
| | - O Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, Ternopil 46027, Ukraine.
| |
Collapse
|
3
|
Singh AK, Abellanas-Perez P, de Andrades D, Cornet I, Fernandez-Lafuente R, Bilal M. Laccase-based biocatalytic systems application in sustainable degradation of pharmaceutically active contaminants. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136803. [PMID: 39672062 DOI: 10.1016/j.jhazmat.2024.136803] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
The outflow of pharmaceutically active chemicals (PhACs) exerts a negative impact on biological systems even at extremely low concentrations. For instance, enormous threats to human and aquatic species have resulted from the widespread use of antibiotics in ecosystems, which stimulate the emergence and formation of antibiotic-resistant bacterial species and associated genes. Additionally, it is challenging to eliminate these PhACs by employing conventional physicochemical water treatment techniques. Enzymatic approaches, including laccase, have been identified as a promising alternative to eliminate a broad array of PhACs from water matrices. However, their application in environmental bioremediation is hindered by several factors, including the enzyme's stability and its location in the aqueous environment. Such obstacles may be surmounted by employing laccase immobilization, which enables enhanced stability (including inactivation caused by the substrate), and thus improved catalysis. This review emphasizes the potential hazards of PhACs to aquatic organisms within the detection concentration range of ngL-1 to µgL-1, as well as the deployment of laccase-based multifunctional biocatalytic systems for the environmentally friendly mitigation of anticancer drugs, analgesics/NSAIDs, antibiotics, antiepileptic agents, and beta blockers as micropollutants. This approach could reduce the underlying toxicological consequences. In addition, current developments, potential applications, and viewpoints have focused on computer-assisted investigations of laccase-PhACs binding at enzyme cavities and degradability prediction.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pedro Abellanas-Perez
- Department of Biocatalysis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, C/ Marie Curie 2, Madrid, Spain
| | - Diandra de Andrades
- Department of Biocatalysis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, C/ Marie Curie 2, Madrid, Spain; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão, Preto, University of São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Iris Cornet
- BioWAVE research group, University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
| | | | - Muhammad Bilal
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12 Str., Gdansk 80-233, Poland; Advanced Materials Center, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| |
Collapse
|
4
|
Bernardini I, Mezzelani M, Panni M, Dalla Rovere G, Nardi A, El Idrissi O, Peruzza L, Gorbi S, Ferraresso S, Bargelloni L, Patarnello T, Regoli F, Milan M. Transcriptional modulation in Mediterranean Mussel Mytilus galloprovincialis following exposure to four pharmaceuticals widely distributed in coastal areas. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107255. [PMID: 39904231 DOI: 10.1016/j.aquatox.2025.107255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/05/2025] [Accepted: 01/19/2025] [Indexed: 02/06/2025]
Abstract
Ecotoxicological risk and the mode of action of human drugs on non-target marine animals remain unclear, keeping a gap of knowledge on risks related to ecosystem disruption and chemical contamination of food chains. Understanding these impacts is critical to developing proper waste management practices and regulatory frameworks to prevent long-term environmental and human health problems. This study investigates the impacts of Gemfibrozil, Metformin, Ramipril, and Venlafaxine, individually and combined on Mytilus galloprovincialis over 30 days and assesses persistent effects post-recovery using RNA-seq and 16S rRNA microbiota profiling. All pharmaceuticals caused few changes in the microbiota while gene expression analyses highlighted drug-specific alterations. Gemfibrozil exposure led to alterations in lipid and fatty acid metabolism, suggesting a similar mode of action to that observed in target species. Metformin significantly impacted the mussels' energy metabolism, with disruptions in specific genes and pathways potentially related to glucose uptake and insulin signaling. Metformin was also the treatment leading to the most significant changes in predicted functional profiles of the microbiota, suggesting that it may influence the microbiota's potential to interact with host glucose metabolism. Ramipril exposure resulted in the up-regulation of stress response and cell cycle regulation pathways and Venlafaxine induced changes in serotonin and synapse pathways, indicating potential similarities in mechanisms of action with target species. Mixture of the four pharmaceuticals severely impacted mussel physiology, including impairment of oxidative phosphorylation and compensatory activation of several pathways involved in energy metabolism. Despite recovery after depuration, changes in stress and energy related metabolism pathways suggests potential persistent effects from combined pharmaceutical exposure. Notably, the up-regulation of mTOR1 signaling in all treatments after 30 days underscores its key role in coordinating bivalve stress responses. The Transcriptomic Hazard Index (THI) calculated for each treatment indicates major/severe hazards after exposure that decreased to slight/moderate hazards after depuration.
Collapse
Affiliation(s)
- Ilaria Bernardini
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Marica Mezzelani
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche 60131 Ancona, Italy
| | - Michela Panni
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche 60131 Ancona, Italy
| | - Giulia Dalla Rovere
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy
| | - Alessandro Nardi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche 60131 Ancona, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Ouafa El Idrissi
- Université de Corse Pasquale Paoli, UMR CNRS 6134 Sciences pour l'Environnement, 20250 Corte, France
| | - Luca Peruzza
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy
| | - Stefania Gorbi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche 60131 Ancona, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Serena Ferraresso
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy
| | - Luca Bargelloni
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Tomaso Patarnello
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche 60131 Ancona, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy.
| | - Massimo Milan
- Dipartimento di Biomedicina Comparata e Alimentazione, Università di Padova, Viale dell'Università, 16, 35020 Legnaro (PD), Polo di Agripolis, Italy; NBFC, National Biodiversity Future Center, Palermo, Italy.
| |
Collapse
|
5
|
Di Y, Li L, Xu J, Liu A, Zhao R, Li S, Li Y, Ding J, Chen S, Qu M. MAPK signaling pathway enhances tolerance of Mytilus galloprovincialis to co-exposure of sulfamethoxazole and polyethylene microplastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125007. [PMID: 39307337 DOI: 10.1016/j.envpol.2024.125007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
Microplastics (MPs) and antibiotics often coexist in complex marine environments, yet their combined detrimental effects on marine organisms remain underexplored. This study evaluated the effects of polyethylene microplastics (PE, 200 μg/L) and sulfamethoxazole (SMX, 50 μg/L), both individually and in combination, on Mytilus galloprovincialis. The exposure lasted 6 days, followed by a 6-day recovery period. Bioaccumulation, DNA damage, pollutants transport/metabolism related responses and responding alterations of mitogen-activated protein kinase (MAPK) signaling pathway were detected in gills and digestive glands. Bioaccumulation of SMX/PE in mussels occurred in a tissue-specific manner, co-exposure altered SMX contents in investigated tissues. Co-exposure did not induce extra DNA damage, elevated DNA damage was alleviated during the recovery period in all treated groups. The exposure of SMX/PE exerted different alterations in pollutants transport/metabolism related responses, characterized by multixenobiotic resistance and relative expression of key genes (cytochrome P450 monooxygenase, glutathione S-transferase, ATP-binding cassette transporters). Key molecules (p38 MAPK, c-jun N-terminal kinase, extracellular regulated protein kinase, nuclear factor-κB and tumor protein p53) in MAPK signaling pathway were activated at transcriptional and translational levels after SMX/PE and co-exposure. Co-regulation between MAPK members and pollutants transport/metabolism related factors was revealed, suggesting MAPK signaling pathway served as a regulating hub in exposed mussels to conquer SMX/PE stress. Overall, this study provides new insights on SMX/PE induced health risks in marine mussels and potential mechanism through MAPK cascades regulation.
Collapse
Affiliation(s)
- Yanan Di
- Ocean College, Zhejiang University, Zhoushan, 316100, China; Hainan Institute of Zhejiang University, Sanya, 572025, China
| | - Liya Li
- Ocean College, Zhejiang University, Zhoushan, 316100, China; Hainan Institute of Zhejiang University, Sanya, 572025, China
| | - Jianzhou Xu
- Ocean College, Zhejiang University, Zhoushan, 316100, China; Hainan Institute of Zhejiang University, Sanya, 572025, China
| | - Ao Liu
- Ocean College, Zhejiang University, Zhoushan, 316100, China
| | - Ruoxuan Zhao
- Ocean College, Zhejiang University, Zhoushan, 316100, China
| | - Shuimei Li
- Ocean College, Zhejiang University, Zhoushan, 316100, China
| | - Yichen Li
- Ocean College, Zhejiang University, Zhoushan, 316100, China
| | - Jiawei Ding
- Ocean College, Zhejiang University, Zhoushan, 316100, China
| | - Siyu Chen
- Ocean College, Zhejiang University, Zhoushan, 316100, China
| | - Mengjie Qu
- Ocean College, Zhejiang University, Zhoushan, 316100, China; Hainan Institute of Zhejiang University, Sanya, 572025, China.
| |
Collapse
|
6
|
Cardoso-Vera JD, Islas-Flores H, Pérez-Alvarez I, Díaz-Camal N. Evidence of Oxidative Stress as a Mechanism of Pharmaceutical-Induced Toxicity in Amphibians. Antioxidants (Basel) 2024; 13:1399. [PMID: 39594540 PMCID: PMC11590872 DOI: 10.3390/antiox13111399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Amphibians, which are essential components of ecosystems, are susceptible to pharmaceutical contamination, a phenomenon of increasing concern owing to the widespread consumption and detection of pharmaceutical compounds in environmental matrices. This review investigates oxidative stress (OS) as the primary mechanism of drug toxicity in these organisms. The evidence gathered reveals that various pharmaceuticals, from antibiotics to anesthetics, induce OS by altering biomarkers of oxidative damage and antioxidant defense. These findings underscore the deleterious effects of pharmaceuticals on amphibian health and development and emphasize the necessity of incorporating OS biomarkers into ecotoxicological risk assessments. Although further studies on diverse amphibian species, drug mixtures, and field studies are required, OS biomarkers offer valuable tools for identifying sublethal risks. Furthermore, the development of more refined OS biomarkers will facilitate the early detection of adverse effects, which are crucial for protecting amphibians and their ecosystems. Ultimately, this review calls for continued research and mitigation strategies to safeguard biodiversity from pharmaceutical contamination.
Collapse
Affiliation(s)
- Jesús Daniel Cardoso-Vera
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, Toluca 50120, Estado de México, Mexico; (I.P.-A.); (N.D.-C.)
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, Toluca 50120, Estado de México, Mexico; (I.P.-A.); (N.D.-C.)
| | | | | |
Collapse
|
7
|
Liu W, Li Z, Li F, Zhang Y, Ding S. Bioaccumulation and behavioral response patterns of crucian carp (Carassius carassius) after carbamazepine exposure and elimination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175519. [PMID: 39168342 DOI: 10.1016/j.scitotenv.2024.175519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
The antiepileptic drug carbamazepine (CBZ) has been widely detected in freshwater, yet its toxic actions in fish at multiple endpoints and the subsequent recovery patterns of the impacted are less discussed. This study investigated the bioaccumulation, physiological and behavioral changes of crucian carp (Carassius carassius) following CBZ exposure (G1 = 6.15 μg/L, G2 = 61.5 μg/L, G3 = 615 μg/L, G4 = 6150 μg/L) and subsequent recovery. Our results showed that CBZ was more likely to accumulate in the liver and brain than in the gills. A concentration-dependent phenomenon was observed; however, the residual CBZ decreased to similar levels after recovery. The behavioral indicators (i.e. feeding, social and spontaneous swimming) were significantly inhibited after 7-days of CBZ exposure, and only recovered at low concentration treatment (G1) after 7-days recovery in CBZ-free water. The acetylcholinesterase (AChE) activity in the brain and superoxide dismutase (SOD) activity in the liver and gills were induced after CBZ exposure and returned to normal levels after 7-days of recovery. In contrast, the inhibition of catalase (CAT) activity caused by CBZ exposure persisted in the high concentration treatment (G4) after recovery. Furthermore, correlation analysis indicated that changes in feeding behavior were closely related to the variation of CBZ concentrations in tissues, and the persistence of abnormal swimming and social behavior was closely related to gill CAT activity. These findings contribute to explore the toxic mechanisms of CBZ and highlight the recovery process and connections between various endpoints.
Collapse
Affiliation(s)
- Wei Liu
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Chang Jiang Ecology (Hubei) Technology Development Co. Ltd., Wuhan 430071, China
| | - Zhao Li
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Feilong Li
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuan Zhang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Sen Ding
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
8
|
Sokołowski A, Caban M, Panasiuk A, Włodarska-Kowalczuk M, Balazy P. Low pharmaceutical pollution of epibenthic organisms from Admiralty Bay, Antarctica (King George Island, South Shetland Islands). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177277. [PMID: 39488289 DOI: 10.1016/j.scitotenv.2024.177277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
The presence of medicinal products has been reported in the Antarctic marine environment but still little is known about the bioaccumulation of these compounds. This study was set up to detect and quantify pharmaceutical residues in benthic biota from Admiralty Bay, King George Island (South Shetland Islands, Antarctica). Pharmaceuticals and stimulants were analysed using LC-MS/MS in dominant epibenthic macroorganisms that were collected at eight nearshore sublittoral sites (water depth 3-30 m) by a SCUBA diving team during austral summer (February 2023). Out of 22 analytes, only the stimulant caffeine (CAF) and the antiepileptic carbamazepine (CBZ) have been identified in the macrobenthic algae and invertebrates indicating a relatively low contamination level of the bay. The analytes were detected predominantly in the northern part of the bay (Mackellar Inlet and Martel Inlet) which reflects likely their elevated environmental concentrations in this area and suggests that local research stations represent the main source of pharmaceutical contamination. Irrespective of the sampling site, both compounds were found almost exclusively in brown and red macroalgae highlighting their potential for uptake and accumulation of CAF and CBZ. This study provided the first evidence of the presence of medicinal substances in the Antarctic macrobenthic organisms and can serve as a baseline for environmental risk assessment.
Collapse
Affiliation(s)
- Adam Sokołowski
- University of Gdańsk, Faculty of Oceanography and Geography, Al. Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Magda Caban
- University of Gdańsk, Faculty of Chemistry, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Anna Panasiuk
- University of Gdańsk, Faculty of Oceanography and Geography, Al. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Maria Włodarska-Kowalczuk
- Institute of Oceanology Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Piotr Balazy
- Institute of Oceanology Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
| |
Collapse
|
9
|
Queirós V, Azeiteiro UM, Santos JL, Alonso E, Soares AMVM, Barata C, Freitas R. Unravelling biochemical responses in the species Mytilus galloprovincialis exposed to the antineoplastics ifosfamide and cisplatin under different temperature scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173668. [PMID: 38839013 DOI: 10.1016/j.scitotenv.2024.173668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
This study investigates the chronic impact of two of the most widely consumed antineoplastic drugs, Ifosfamide (IF) and Cisplatin (CDDP), on the bivalve species Mytilus galloprovincialis under current (17 °C) and predicted warming conditions (21 °C). Accompanying the expected increase in worldwide cancer incidence, antineoplastics detection in the aquatic environment is also expected to rise. Mussels were exposed to varying concentrations of IF (10, 100, 500 ng/L) and CDDP (10, 100, 1000 ng/L) for 28 days. Biochemical analyses focused on metabolic, antioxidant and biotransformation capacities, cellular damage, and neurotoxicity. Results showed temperature-dependent variations in biochemical responses. Metabolic capacity remained stable in mussels exposed to IF, while CDDP exposure increased it at 1000 ng/L for both temperatures. Antioxidant enzyme activities were unaffected by IF, but CDDP activated them, particularly at 21 °C. Biotransformation capacity was unchanged by IF but enhanced by CDDP. Nevertheless, cellular damage occurred at CDDP concentrations above 100 ng/L, regardless of temperature. Integrated biomarker responses highlighted CDDP's greater impact, emphasizing the critical role of temperature in shaping organismal responses and underscoring the complexity of environmental stressor interactions.
Collapse
Affiliation(s)
- Vanessa Queirós
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ulisses M Azeiteiro
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África 7, 41011 Sevilla, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África 7, 41011 Sevilla, Spain
| | - Amadeu M V M Soares
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/ Jordi Girona 18, 08034 Barcelona, Spain
| | - Rosa Freitas
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
10
|
Geng Q, Zou L, Guo M, Peng J, Li F, Bi Y, Jiang S, Qin H, Tan Z. Insights into the combined toxicity and mechanisms of BDE-47 and PFOA in marine blue mussel: An integrated study at the physiochemical and molecular levels. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:106999. [PMID: 38875954 DOI: 10.1016/j.aquatox.2024.106999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/27/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
The coexistence of multiple emerging contaminants imposes a substantial burden on the ecophysiological functions in organisms. The combined toxicity and underlying mechanism requires in-depth understanding. Here, marine blue mussel (Mytilus galloprovincialis L.) was selected and exposed to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and perfluorooctanoic acid (PFOA) individually and in combination at environmental related concentrations to elucidate differences in stress responses and potential toxicological mechanisms. Characterization and comparison of accumulation, biomarkers, histopathology, transcriptomics and metabolomics were performed. Co-exposure resulted in differential accumulation patterns, exacerbated histopathological alterations, and different responses in oxidative stress and biomarkers for xenobiotic transportation. Moreover, the identified differentially expressed genes (DEGs) and differential metabolites (DEMs) in mussels were found to be annotated to different metabolic pathways. Correlation analyses further indicated that DEGs and DEMs were significantly correlated with the above biomarkers. BDE-47 and PFOA altered the genes and metabolites related to amino acid metabolism, energy and purine metabolism, ABC transporters, and glutathione metabolism to varying degrees, subsequently inducing accumulation differences and combined toxicity. Furthermore, the present work highlighted the pivotal role of Nrf2-keap1 detoxification pathway in the acclimation of M. galloprovincialis to reactive oxygen species (ROS) stress induced by BDE-47 and PFOA. This study enabled more comprehensive understanding of combined toxic mechanism of multi emerging contaminants pollution.
Collapse
Affiliation(s)
- Qianqian Geng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou 510640, China
| | - Liang Zou
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Mengmeng Guo
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jixing Peng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Fengling Li
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yujie Bi
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Shuqi Jiang
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Hanlin Qin
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| |
Collapse
|
11
|
Impellitteri F, Briglia M, Porcino C, Stoliar O, Yunko K, Germanà A, Piccione G, Faggio C, Guerrera MC. The odd couple: Caffeine and microplastics. Morphological and physiological changes in Mytilus galloprovincialis. Microsc Res Tech 2024; 87:1092-1110. [PMID: 38251430 DOI: 10.1002/jemt.24483] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/29/2023] [Accepted: 12/16/2023] [Indexed: 01/23/2024]
Abstract
In recent years, the presence of pharmaceuticals and microplastics (MPs) in aquatic ecosystems has raised concerns about their environmental impact. This study explores the combined effects of caffeine, a common pharmaceutical pollutant, and MPs on the marine mussel Mytilus galloprovincialis. Caffeine, at concentrations of 20.0 μg L-1, and MPs (1 mg L-1, 35-50 μm size range), was used to mimic real-world exposure scenarios. Two hundred M. galloprovincialis specimens were divided into four groups: caffeine, MPs, Mix (caffeine + MPs), and Control. After a two-week acclimation period, the mollusks were subjected to these pollutants in oxygen-aerated aquariums under controlled conditions for 14 days. Histopathological assessments were performed to evaluate gill morphology. Cellular volume regulation and digestive gland cell viability were also analyzed. Exposure to caffeine and MPs induced significant morphological changes in M. galloprovincialis gills, including cilia loss, ciliary disk damage, and cellular alterations. The chitinous rod supporting filaments also suffered damage, potentially due to MP interactions, leading to hemocyte infiltration and filament integrity compromise. Hemocytic aggregation suggested an inflammatory response to caffeine. In addition, viability assessments of digestive gland cells revealed potential damage to cell membranes and function, with impaired cell volume regulation, particularly in the Mix group, raising concerns about nutrient metabolism disruption and organ function compromise. These findings underscore the vulnerability of M. galloprovincialis to environmental pollutants and emphasize the need for monitoring and mitigation efforts. RESEARCH HIGHLIGHTS: The synergy of caffeine and microplastics (MPs) in aquatic ecosystems warrants investigation. MPs and caffeine could affect gill morphology of Mytilus galloprovincialis. Caffeine-exposed cells had lower viability than the control group in the NR retention test. MPs and mix-exposed cells struggled to recover their volume.
Collapse
Affiliation(s)
| | - Marilena Briglia
- Department of Veterinary Sciences, Zebrafish Neuromorphology Lab, University of Messina, Messina, Italy
| | - Caterina Porcino
- Department of Veterinary Sciences, Zebrafish Neuromorphology Lab, University of Messina, Messina, Italy
| | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Katerina Yunko
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Antonino Germanà
- Department of Veterinary Sciences, Zebrafish Neuromorphology Lab, University of Messina, Messina, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Maria Cristina Guerrera
- Department of Veterinary Sciences, Zebrafish Neuromorphology Lab, University of Messina, Messina, Italy
| |
Collapse
|
12
|
Sun H, Guo Z, Zhang L, Hua X, Dong D. Degradation of carbamazepine in ice with bromate and nitrite: Role of reactive nitrogen species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171376. [PMID: 38432388 DOI: 10.1016/j.scitotenv.2024.171376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Seasonal freezing of waters occurs during winter in cold regions. Bromate ( [Formula: see text] ) is a disinfection by-product generated during water treatment, its interaction with emerging contaminants may be affected by freezing. Nitrite ( [Formula: see text] ) is widely distributed in the environment, whereas its effect on the interaction of emerging contaminants and [Formula: see text] in ice may have been overlooked. Herein carbamazepine (CBZ) was selected as a model emerging contaminant to elucidate the role of reactive nitrogen species (RNS) in contaminant transformation during the reduction of [Formula: see text] by [Formula: see text] in ice. Results indicated that freezing significantly enhanced CBZ degradation by [Formula: see text] . The CBZ degradation by [Formula: see text] and [Formula: see text] in ice was 25.4 %-27.8 % higher than that by [Formula: see text] . Contributions of hydroxyl radical (•OH), bromine radical (•Br), and RNS to CBZ degradation in freezing/dark or sunlight systems were 8.1 % or 15.9 %, 25.4 % or 7.2 %, and 66.5 % or 76.9 %, respectively. Most CBZ was degraded by RNS generated during the reduction of [Formula: see text] by [Formula: see text] in ice, resulting in 16.4 % of transformation products being nitro-containing byproducts. Hybrid toxicity of CBZ/ [Formula: see text] / [Formula: see text] system was reduced effectively after the freezing-sunlight process. This study can provide new insights into the environmental fate of emerging contaminants, [Formula: see text] , and [Formula: see text] in cold regions.
Collapse
Affiliation(s)
- Heyang Sun
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Zhiyong Guo
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Liwen Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Xiuyi Hua
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Deming Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| |
Collapse
|
13
|
Mezzelani M, Notarstefano V, Panni M, Giorgini E, Gorbi S, Regoli F. Exposure to environmental pharmaceuticals affects the macromolecular composition of mussels digestive glands. Sci Rep 2024; 14:9369. [PMID: 38653774 DOI: 10.1038/s41598-024-59663-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Human pharmaceuticals represent a major challenge in natural environment. A better knowledge on their mechanisms of action and adverse effects on cellular pathways is fundamental to predict long-term consequences for marine wildlife. The FTIRI Imaging (FTIRI) spectroscopy represents a vibrational technique allowing to map specific areas of non-homogeneous biological samples, providing a unique biochemical and ultrastructural fingerprint of the tissue. In this study, FTIRI technique has been applied, for the first time, to characterize (i) the chemical building blocks of digestive glands of Mytilus galloprovincialis, (ii) alterations and (iii) resilience of macromolecular composition, after a 14-days exposure to 0.5 µg/L of carbamazepine (CBZ), valsartan (VAL) and their mixture, followed by a 14-days recovery period. Spectral features of mussels digestive glands provided insights on composition and topographical distribution of main groups of biological macromolecules, such as proteins, lipids, and glycosylated compounds. Pharmaceuticals caused an increase in the total amount of protein and a significant decrease of lipids levels. Changes in macromolecular features reflected the modulation of specific molecular and biochemical pathways thus supporting our knowledge on mechanisms of action of such emerging pollutants. Overall, the applied approach could represent an added value within integrated strategies for the effects-based evaluation of environmental contaminants.
Collapse
Affiliation(s)
- Marica Mezzelani
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, 60131, Italy
| | - Valentina Notarstefano
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, 60131, Italy
| | - Michela Panni
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, 60131, Italy
| | - Elisabetta Giorgini
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, 60131, Italy
| | - Stefania Gorbi
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, 60131, Italy
- NBFC, National Biodiversity Future Center, Palermo, 90131, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, 60131, Italy.
- NBFC, National Biodiversity Future Center, Palermo, 90131, Italy.
| |
Collapse
|
14
|
Božičević L, Vrček V, Peranić N, Kalčec N, Vrček IV. Nanoplastics increase in vitro oestrogenic activity of neurotherapeutic drugs. Arh Hig Rada Toksikol 2024; 75:68-75. [PMID: 38548383 PMCID: PMC10978159 DOI: 10.2478/aiht-2024-75-3818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/01/2024] [Accepted: 03/01/2024] [Indexed: 04/01/2024] Open
Abstract
Environmental pollution with plastic nanoparticles (PNPs) has rendered hazard assessment of unintentional human exposure to neurotherapeutic drugs through contaminated water and food ever more complicated. Due to their small size, PNPs can easily enter different cell types and cross different biological barriers, while their high surface-to-volume ratio enables higher adsorption of chemicals. This is how PNPs take the role of a Trojan horse as they enhance bioaccumulation of many different pollutants. One of the health concerns related to water pollution with neurotherapeutic drugs is endocrine disruption, already evidenced for the anticonvulsant drug carbamazepine (Cbz) and antidepressant fluoxetine (Flx). Our study aimed to evaluate endocrine disrupting effects of Cbz and Flx in mixtures with polystyrene nanoparticles (PSNPs) using the in vitro luciferase assay to measure oestrogen receptor activity in T47D-KBluc cells treated with Cbz-PSNPs or Flx-PSNPs mixtures and compare it with the activities observed in cells treated with individual mixture components (Cbz, Flx, or PSNPs). Dose ranges used in the study were 0.1-10 mg/L, 1-100 µmol/L, and 0.1-10 µmol/L for PSNPs, Cbz, and Flx, respectively. Our findings show that none of the individual components activate oestrogen receptors, while the mixtures induce oestrogen receptor activity starting with 0.1 mg/L for PSNPs, 10 µmol/L for Cbz, and 0.5 µmol/L for Flx. This is the first study to evidence that PSNPs increase oestrogen receptor activity induced by neurotherapeutic drugs at their environmentally relevant concentrations and calls for urgent inclusion of complex mixtures in health hazard assessments to inform regulatory response.
Collapse
Affiliation(s)
- Lucija Božičević
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Valerije Vrček
- University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Nikolina Peranić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Nikolina Kalčec
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Ivana Vinković Vrček
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
- University of Rijeka Faculty of Medicine, Rijeka, Croatia
| |
Collapse
|
15
|
Schuijt LM, van Drimmelen CKE, Buijse LL, van Smeden J, Wu D, Boerwinkel MC, Belgers DJM, Matser AM, Roessink I, Beentjes KK, Trimbos KB, Smidt H, Van den Brink PJ. Assessing ecological responses to exposure to the antibiotic sulfamethoxazole in freshwater mesocosms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123199. [PMID: 38128712 DOI: 10.1016/j.envpol.2023.123199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Antibiotics are a contaminant class of worldwide concern as they are frequently detected in aquatic ecosystems. To better understand the impacts of antibiotics on aquatic ecosystems, we conducted an outdoor mesocosm experiment in which aquatic communities were exposed to different concentrations of the antibiotic sulfamethoxazole (0, 0.15, 1.5, 15 and 150 μg/L). These concentrations include mean (0.15 μg/L) and maximum detected concentrations (15 and 150 μg/L) in aquatic ecosystems worldwide. Sulfamethoxazole was applied once a week for eight consecutive weeks to 1530 L outdoor mesocosms in the Netherlands, followed by an eight-week recovery period. We evaluated phytoplankton-, bacterial- and invertebrate responses during and after sulfamethoxazole exposure and assessed impacts on organic matter decomposition. Contrary to our expectations, consistent treatment-related effects on algal and bacterial communities could not be demonstrated. In addition, sulfamethoxazole did not significantly affect zooplankton and macroinvertebrate communities. However, some effects on specific taxa were observed, with an increase in Mesostoma flatworm abundance (NOEC of <0.15 μg/L). In addition, eDNA analyses indicated negative impacts on the insects Odonata at a sulfamethoxazole concentration of 15 μg/L. Overall, environmentally relevant sulfamethoxazole concentration did not result in direct or indirect impairment of entire aquatic communities and ecological processes in our mesocosms. However, several specific macroinvertebrate taxa demonstrated significant (in)direct effects from sulfamethoxazole. Comparison of the results with the literature showed inconsistent results between studies using comparable, environmentally relevant, concentrations. Therefore, our study highlights the importance of testing the ecological impacts of pharmaceuticals (such as sulfamethoxazole) across multiple trophic levels spanning multiple aquatic communities, to fully understand its potential ecological threats.
Collapse
Affiliation(s)
- Lara M Schuijt
- Aquatic Ecology and Water Quality Management Group, Wageningen University & Research, Wageningen, the Netherlands; Wageningen Environmental Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Chantal K E van Drimmelen
- Aquatic Ecology and Water Quality Management Group, Wageningen University & Research, Wageningen, the Netherlands; Hamburg University of Applied Science, Ulmenliet 20, D-21033, Hamburg, Germany
| | - Laura L Buijse
- Wageningen Environmental Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Jasper van Smeden
- Wageningen Environmental Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Dailing Wu
- Aquatic Ecology and Water Quality Management Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Marie-Claire Boerwinkel
- Wageningen Environmental Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Dick J M Belgers
- Wageningen Environmental Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Arrienne M Matser
- Wageningen Environmental Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Ivo Roessink
- Wageningen Environmental Research, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Krijn B Trimbos
- Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University and & Research, Wageningen, the Netherlands
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
16
|
Vardanyan A, Agback T, Golovko O, Diétre Q, Seisenbaeva GA. Natural Silicates Encapsulated Enzymes as Green Biocatalysts for Degradation of Pharmaceuticals. ACS ES&T WATER 2024; 4:751-760. [PMID: 38356929 PMCID: PMC10862536 DOI: 10.1021/acsestwater.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
Biocatalytic degradation with the use of enzymes has gained great attention in the past few years due to its advantages of high efficiency and environmental friendliness. Novel, cost-effective, and green nanoadsorbents were produced in this study, using natural silicates as an enzyme host matrix for core-shell immobilization technique. With the natural silicate as a core and silica layer as a shell, it was possible to encapsulate two different enzymes: horseradish peroxidase (HRP) and laccase, for removal and degradation of three pharmaceuticals: diclofenac (DFC), carbamazepine (CBZ), and paracetamol (PC). The biocatalysts demonstrated high oxidation rates for the selected pollutants. In particular HRP immobilized fly ash and perlite degraded DFC and PC completely during 3 days of interaction and also showed high degradation rates for CBZ. Immobilized laccase was successful in PC degradation, where up to 70-80% degradation of the compounds with aromatic rings was reported by NMR measurements for a high drug concentration of 10 μg/mL. The immobilization method played a significant role in this process by providing stability and protection for the enzymes over 3 weeks. Furthermore, the enzymes acted differently in the three chosen supports due to their complex chemical composition, which could have an effect on the overall enzyme activity.
Collapse
Affiliation(s)
- Ani Vardanyan
- Department
of Molecular Sciences, Swedish University
of Agricultural Sciences, P.O. Box 7015, Uppsala 75007, Sweden
| | - Tatiana Agback
- Department
of Molecular Sciences, Swedish University
of Agricultural Sciences, P.O. Box 7015, Uppsala 75007, Sweden
| | - Oksana Golovko
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences,
P.O. Box 7050, Uppsala 75007, Sweden
| | - Quentin Diétre
- Department
of Molecular Sciences, Swedish University
of Agricultural Sciences, P.O. Box 7015, Uppsala 75007, Sweden
| | - Gulaim A. Seisenbaeva
- Department
of Molecular Sciences, Swedish University
of Agricultural Sciences, P.O. Box 7015, Uppsala 75007, Sweden
| |
Collapse
|
17
|
Rafiq A, Capolupo M, Addesse G, Valbonesi P, Fabbri E. Antidepressants and their metabolites primarily affect lysosomal functions in the marine mussel, Mytilus galloprovincialis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166078. [PMID: 37574064 DOI: 10.1016/j.scitotenv.2023.166078] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/15/2023]
Abstract
Antidepressants widely occur as emerging contaminants in marine coastal waters, with concentrations reported in the low ng/L range. Although at relatively lower levels with respect to other pharmaceuticals, antidepressants - fluoxetine (FLX) in particular - have attracted attention because of their striking effects exerted at low doses on marine invertebrates. In this study, the effects of four antidepressants including FLX, sertraline (SER), and citalopram, as members of the selective serotonin reuptake inhibitor (SSRI) class, and venlafaxine (VEN) as a member of the serotonin and norepinephrine reuptake inhibitor (SNRI) class, were evaluated in the mussel Mytilus galloprovincialis. In addition, the effects of two main metabolites of FLX and VEN, i.e., norfluoxetine (NFL) and O-desmethylvenlafaxine (ODV) respectively, were compared to those of the parent compounds. Eight concentrations of each drug (0.5-500 ng/L range) were tested on the early life stage endpoints of gamete fertilization and larval development at 48 h post fertilization (hpf). Egg fertilization was reduced by all compounds, except for VEN. Larval development at 48 hpf was affected by all SSRIs, but not by SNRIs. The above effects were significant but never exceeded 20 % of control values. Adult mussels were exposed in vivo for 7 days to environmental concentrations of the drugs (0.5, 5, and 10 ng/L) and a battery of eight biomarkers was assessed. Antidepressants primarily targeted lysosomal functions, decreasing haemocyte lysosome membrane stability (up to 70 % reduction) and increasing of the lysosome/cytosol ratio (up to 220 %), neutral lipid (up to 230 %), and lipofuscin (up to 440 %) accumulation in digestive gland. Only SER and NFL significantly affected catalase and glutathione-S-transferase activities in gills and digestive gland. NFL and ODV, were effective and sometimes more active than the parent compounds. All compounds impaired mussel health status, as indicated by the low to high stress levels assigned using the Mussel Expert System.
Collapse
Affiliation(s)
- Ayesha Rafiq
- Department of Biological, Geological and Environmental Sciences, University of Bologna Campus of Ravenna, via S. Alberto 163, 48123 Ravenna, Italy
| | - Marco Capolupo
- Italian Institute for Environmental Protection and Research (ISPRA), Rome, Italy
| | - Giulia Addesse
- Department of Biological, Geological and Environmental Sciences, University of Bologna Campus of Ravenna, via S. Alberto 163, 48123 Ravenna, Italy
| | - Paola Valbonesi
- Department of Biological, Geological and Environmental Sciences, University of Bologna Campus of Ravenna, via S. Alberto 163, 48123 Ravenna, Italy
| | - Elena Fabbri
- Department of Biological, Geological and Environmental Sciences, University of Bologna Campus of Ravenna, via S. Alberto 163, 48123 Ravenna, Italy; National Future Biodiversity Center (NFBC), Palermo, Italy.
| |
Collapse
|
18
|
Zhu X, Luo T, Wang D, Zhao Y, Jin Y, Yang G. The occurrence of typical psychotropic drugs in the aquatic environments and their potential toxicity to aquatic organisms - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165732. [PMID: 37495145 DOI: 10.1016/j.scitotenv.2023.165732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Psychotropic drugs (PDs) and their bioactive metabolites often persist in aquatic environments due to their typical physical properties, which made them resistant to removal by traditional wastewater treatment plants (WWTPs). Consequently, such drugs and/or their metabolites are frequently detected in both aquatic environments and organisms. Even at low concentrations, these drugs can exhibit toxic effects on non-target organisms including bony fish (zebrafish (Danio rerio) and fathead minnows) and bivalves (freshwater mussels and clams). This narrative review focuses on the quintessential representatives of three different categories of PDs-antiepileptics, antidepressants, and antipsychotics. The data regarding their concentrations occurring in the environment, patterns of distribution, the degree of enrichment in various tissues of aquatic organisms, and the toxicological effects on them are summarized. The toxicological assessments of these drugs included the evaluation of their effects on the reproductive, embryonic development, oxidative stress-related, neurobehavioral, and genetic functions in various experimental models. However, the mechanisms underlying the toxicity of PDs to aquatic organisms and their potential health risks to humans remain unclear. Most studies have focused on the effects caused by acute short-term exposure due to limitations in the experimental conditions, thus making it necessary to investigate the chronic toxic effects at concentrations that are in coherence with those occurring in the environment. Additionally, this review aims to raise awareness and stimulate further research efforts by highlighting the gaps in the understanding of the mechanisms behind PD-induced toxicity and potential health risks. Ultimately, the study underscores the importance of developing advanced remediation methods for the removal of PDs in WWTPs and encourages a broader discussion on mitigating their environmental impacts.
Collapse
Affiliation(s)
- Xianghai Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; Xianghu Laboratory, Hangzhou, 311231, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China; Xianghu Laboratory, Hangzhou, 311231, China.
| |
Collapse
|
19
|
Fiszka Borzyszkowska A, Sulowska A, Czaja P, Bielicka-Giełdoń A, Zekker I, Zielińska-Jurek A. ZnO-decorated green-synthesized multi-doped carbon dots from Chlorella pyrenoidosa for sustainable photocatalytic carbamazepine degradation. RSC Adv 2023; 13:25529-25551. [PMID: 37636499 PMCID: PMC10450576 DOI: 10.1039/d3ra04188c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023] Open
Abstract
The promising green synthesis of carbon dots (CDs) from microalga Chlorella pyrenoidosa was achieved using simple hydrothermal and microwave-assisted methods. Doping of nanomaterials by nonmetals (N, S, and P) was confirmed by X-ray photoelectron spectroscopy (XPS), while the existence of metals in the CDs was confirmed by inductively coupled plasma optical emission spectroscopy (ICP-OES) and transmission electron microscopy (TEM), and Mg, Ca, K, and Na were found as the dominant doped metals. The novel nanomaterials with excellent photoluminescence (PL) properties were used for the modification of ZnO obtained by a simple hydrothermal process. In this regard, a series of ZnO decorated with multi-doped carbon dots (xCDs) was prepared and their photocatalytic properties were evaluated. The ZnO-xCD photocatalysts were characterized by various advanced techniques including X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), XPS, Brunauer-Emmett-Teller (BET), PL, ultraviolet-visible (UV-vis) spectroscopy and electrochemical impedance spectroscopy (EIS) analysis. The photocatalytic behaviour of the obtained materials was investigated in the degradation of carbamazepine (CBZ). The influence of the synthesis method of xCDs and their content on the activity of the photocatalyst was examined. The photocatalyst ZnO modified with 3% xCDs obtained by the microwave-assisted method revealed the highest effectiveness for CBZ degradation and allowed for a first-order degradation rate of 2.85 times in comparison with non-modified ZnO. The improvement of the photocatalytic process was achieved by support with peroxymonosulphate resulting in up to 3.18 times a first order kinetic rate constant compared with that of simple photocatalysis in the presence of ZnO-xCDs. Taken together, our synthesized multi-doped CDs and their nanohybrids with ZnO, can be considered as promising candidates for photocatalytic applications.
Collapse
Affiliation(s)
- Agnieszka Fiszka Borzyszkowska
- Department of Processing Engineering and Chemical Technology, Gdansk University of Technology Gdańsk, Gabriela Narutowicza 11/12 80-233 Gdansk Poland
- EcoTech Center, Gdańsk University of Technology G. Narutowicza 11/12 80-233 Gdansk Poland
| | - Agnieszka Sulowska
- Department of Processing Engineering and Chemical Technology, Gdansk University of Technology Gdańsk, Gabriela Narutowicza 11/12 80-233 Gdansk Poland
| | - Paweł Czaja
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences Reymonta 25 St Krakow Poland
| | | | - Ivar Zekker
- Institute of Chemistry, University of Tartu 14a Ravila St. 50411 Tartu Estonia
| | - Anna Zielińska-Jurek
- Department of Processing Engineering and Chemical Technology, Gdansk University of Technology Gdańsk, Gabriela Narutowicza 11/12 80-233 Gdansk Poland
- EcoTech Center, Gdańsk University of Technology G. Narutowicza 11/12 80-233 Gdansk Poland
| |
Collapse
|
20
|
Afsa S, De Marco G, Cristaldi A, Giannetto A, Galati M, Billè B, Conti GO, Ben Mansour H, Ferrante M, Cappello T. Single and combined effects of caffeine and salicylic acid on mussel Mytilus galloprovincialis: Changes at histomorphological, molecular and biochemical levels. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104167. [PMID: 37286067 DOI: 10.1016/j.etap.2023.104167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
Caffeine (CAF) and salicylic acid (SA) are frequently detected in waterbody, though information on their biological impact is poor. This work assesses the effects of CAF (5ng/L to 10µg/L) and SA (0.05µg/L to 100µg/L) alone and combined as CAF+SA (5ng/L+0.05µg/L to 10µg/L+100µg/L) on mussel Mytilus galloprovincialis under 12-days exposure by histomorphology of digestive gland and oxidative stress defense at molecular and biochemical levels. Besides evaluating tissue accumulation, absence of histomorphological damage and haemocyte infiltration highlighted activation of defensive mechanisms. Up-regulation of Cu/Zn-sod, Mn-sod, cat and gst combined with increased catalase and glutathione S-transferase activity were found in CAF-exposed mussels, while SA reduced ROS production and mitochondrial activity. CAF+SA exposure induced differential responses, and the integrated biomarker response (IBR) revealed more pronounced effects of SA than CAF. These results enlarge knowledge on pharmaceuticals impact on non-target organisms, emphasizing the need for proper environmental risk assessment.
Collapse
Affiliation(s)
- Sabrine Afsa
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000 Monastir, Tunisia
| | - Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Antonio Cristaldi
- Environmental and Food Hygiene (LIAA), Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| | - Alessia Giannetto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Mariachiara Galati
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Barbara Billè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Gea Oliveri Conti
- Environmental and Food Hygiene (LIAA), Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000 Monastir, Tunisia
| | - Margherita Ferrante
- Environmental and Food Hygiene (LIAA), Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| |
Collapse
|