1
|
Wang Y, Liu Y, Zhang H, Duan X, Ma J, Sun H, Tian W, Wang S. Carbonaceous materials in structural dimensions for advanced oxidation processes. Chem Soc Rev 2025; 54:2436-2482. [PMID: 39895415 DOI: 10.1039/d4cs00338a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Carbonaceous materials have attracted extensive research and application interests in water treatment owing to their advantageous structural and physicochemical properties. Despite the significant interest and ongoing debates on the mechanisms through which carbonaceous materials facilitate advanced oxidation processes (AOPs), a systematic summary of carbon materials across all dimensions (0D-3D nanocarbon to bulk carbon) in various AOP systems remains absent. Addressing this gap, the current review presents a comprehensive analysis of various carbon/oxidant systems, exploring carbon quantum dots (0D), nanodiamonds (0D), carbon nanotubes (1D), graphene derivatives (2D), nanoporous carbon (3D), and biochar (bulk 3D), across different oxidant systems: persulfates (peroxymonosulfate/peroxydisulfate), ozone, hydrogen peroxide, and high-valent metals (Mn(VII)/Fe(VI)). Our discussion is anchored on the identification of active sites and elucidation of catalytic mechanisms, spanning both radical and nonradical pathways. By dissecting catalysis-related factors such as sp2/sp3 C, defects, and surface functional groups that include heteroatoms and oxygen groups in different carbon configurations, this review aims to provide a holistic understanding of the catalytic nature of different dimensional carbonaceous materials in AOPs. Furthermore, we address current challenges and underscore the potential for optimizing and innovating water treatment methodologies through the strategic application of carbon-based catalysts. Finally, prospects for future investigations and the associated bottlenecks are proposed.
Collapse
Affiliation(s)
- Yunpeng Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Ya Liu
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Huayang Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Hongqi Sun
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Wenjie Tian
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
2
|
Wang C, Lin X, Zhang X, Show PL. Research advances on production and application of algal biochar in environmental remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123860. [PMID: 38537803 DOI: 10.1016/j.envpol.2024.123860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/01/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Algae, comprising microalgae and macroalgae, have emerged as a promising feedstock for the production of functional biochar. Recently, the application of algal biochar in environmental remediation gains increasing attention. This review summarizes research advancements in the synthesis and application of algal biochar, a versatile and sustainable material for environmental remediation ranging from wastewater treatment to soil improvement. Algal biochar can be prepared by pyrolysis, microwave-assisted pyrolysis, and hydrothermal carbonization. Physical and chemical modifications have proven to be effective for improving biochar properties. Algal biochar is promising for removing diverse pollutants including heavy metals, organic pollutants, and microplastics. The role in soil improvement signifies a sustainable approach to enhancing soil structure, nutrient retention, and microbial activity. Research gaps are identified based on current understanding, necessitating further exploration into variations in biochar characteristics, the performance improvement, large-scale applications, and the long-term evaluation for environmental application. This review provides a better understanding of algal biochar as a sustainable and effective tool in environmental remediation.
Collapse
Affiliation(s)
- Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China; Zhongyuan Critical Metal Laboratory, Zhengzhou University, Zhengzhou 450001, China; The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou 450001, China
| | - Xiao Lin
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China; Zhongyuan Critical Metal Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Xiuxiu Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China; Zhongyuan Critical Metal Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
3
|
Hung CM, Gautam DS, Huang CP, Chen CW, Dong CD. Metal-free nitrogen and sulfur binary-doped cellulose-based biochar for efficient suppression of priority organic pollutants and environmental application. BIORESOURCE TECHNOLOGY 2024; 393:130131. [PMID: 38040300 DOI: 10.1016/j.biortech.2023.130131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/08/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Biochar production from cellulose biomass is an alternative solution in the search for clean and renewable biofuel. However, the rational design of cellulose biochar (CLBC) for polycyclic aromatic hydrocarbons (PAHs) reduction by integrating pyrolysis process parameters and introducing heteroatoms as inhibitors remains to be studied. Therefore, exogenous heteroatoms (N, B, S, SB, NB, and NS) were used to modify CLBC for the first time. CLBC300 pyrolyzed at 300 °C in a CO2 atmosphere achieved the highest concentrations of PAHs (4982 ± 271 ng g-1), compared with that of CLBC700 (3615 ± 71 ng g-1) formed in a N2 atmosphere without heteroatom doping. The results showed that binary nitrogen- and sulfur-doped CLBC exhibited remarkable PAH-removal performance of 99 % with the lowest toxic equivalency (TEQ) value of 9 ng g-1. Overall, this study presents novel insights into the development of a heteroatom-based modification approach for reducing CLBC-borne PAHs and creating value-added products from cellulose biomass.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| | - Divyashakti Sureshchandra Gautam
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
4
|
Wang Z, Li J. The Physicochemical Characteristics and Heavy Metal Retention Capability of Black Liquor Lignin-Based Biochars. Molecules 2023; 28:7694. [PMID: 38067425 PMCID: PMC10708106 DOI: 10.3390/molecules28237694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 07/30/2024] Open
Abstract
Due to its high carbon content, lignin, particularly for lignin-containing solid waste, is considered an excellent raw material for the preparation of carbon materials like biochar. To produce high-quality lignin-based biochar (LGBCs), lignin extracted from black liquor was employed to prepare biochar at various pyrolysis temperatures (300~600 °C). The physicochemical properties of LGBCs were assessed using scanning electron microscopy, N2 adsorption/desorption, Fourier transform infrared spectroscopy, Raman spectroscopy, and X-ray diffraction. Furthermore, the adsorption capability and potential mechanism of LGBCs in removing Cd(II) were investigated as well. The results indicate that LGBCs produced at higher pyrolysis temperatures exhibit rougher surfaces and more developed pore structures, which facilitate the exposure of numerous active adsorption sites. The adsorption of Cd(II) by LGBCs generally follows the order of LG-300C < LG-400C < LG-500C < LG-600C. According to the Langmuir adsorption isotherm model, the theoretical maximum adsorption capacity of LG-600C for Cd(II) is calculated to be 18.54 mg/g. Adsorption mechanism analysis reveals that the complexation interaction, dependent on the surface functional groups, plays a crucial role in the adsorption of Cd(II) by LGBCs prepared at higher pyrolysis temperatures. This study demonstrates that, by controlling the pyrolysis temperature during biochar preparation, high-quality lignin-based biochar can be readily obtained.
Collapse
Affiliation(s)
- Zhanghong Wang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China;
- Research Center of Solid Waste Pollution Control and Recycling, Guizhou Minzu University, Guiyang 550025, China
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Jiale Li
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China;
| |
Collapse
|
5
|
Dong S, Liu X, Kong X, Dong F, Yu Y, Wang L, Wang D, He Z, Song S. Boosting photocatalytic H 2 evolution on UIO-66-NH 2/covalent triazine-based frameworks composites by constructing a covalent heterojunction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111039-111050. [PMID: 37801244 DOI: 10.1007/s11356-023-30258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023]
Abstract
Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) have been proved as efficient catalysts for photocatalytic hydrogen (H2) evolution, thanks to their tunable functionalities, permanent porosity, excellent visible light response, and physicochemical stability. Herein, a series of photocatalysts (termed NUBC) was fabricated by loading different amounts of Zr-UiO-66-NH2 (NU) onto a benzoic acid-modified covalent triazine-based framework (BC) based on post-synthetic covalent modification. The resulting NUBC catalysts exhibited a type-II Z-scheme heterojunction structure formed via the amide covalent bonds between the amine groups on NU and carboxyl groups on BC. The optimal loading of NU on BC is 30 wt.% (30NUBC) and the corresponding photocatalytic H2 evolution rate was 378 μmol h-1 g-1, almost 445 and 2 times than that of NU and BC, respectively. The synergistic effect between the type-II Z-scheme heterojunctions and amide bonds was conducive to boosting visible light harvesting and facilitating charge transportation and separation. Furthermore, the prepared NUBC catalysts show great reusability and stability. Overall, this work sheds light on the design of novel MOF/COF hybrid materials and provides a systematic exploration of their photocatalytic H2 evolution properties.
Collapse
Affiliation(s)
- Shiwen Dong
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xuan Liu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xianxian Kong
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Feilong Dong
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yan Yu
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Ningbo, 315300, China
| | - Lizhang Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Da Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Zhiqiao He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China.
| | - Shuang Song
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| |
Collapse
|