1
|
Sun J, Yang W, Li M, Zhang S, Sun Y, Wang F. Metagenomic analysis reveals soil microbiome responses to microplastics and ZnO nanoparticles in an agricultural soil. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138164. [PMID: 40188549 DOI: 10.1016/j.jhazmat.2025.138164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/24/2025] [Accepted: 04/02/2025] [Indexed: 04/08/2025]
Abstract
Both microplastics (MPs) and engineered nanoparticles are pervasive emerging contaminants that can produce combined toxicity to terrestrial ecosystems, yet their effects on soil microbiomes remain inadequately understood. Here, metagenomic analysis was employed to investigate the impacts of three common MPs [i.e., polyethylene (PE), polystyrene (PS), and polylactic acid (PLA)] and zinc oxide nanoparticles (nZnO) on soil microbiomes. Both MPs and nZnO significantly altered the taxonomic, genetic, and functional diversity of soil microbes, with distinct effects depending on dosage or type. Archaea, fungi, and viruses exhibited more pronounced responses compared to bacteria. Higher doses of MPs and nZnO reduced gene abundance for nutrient cycles like C degradation and N cycling, but enhanced CO2 fixation and S metabolism. nZnO consistently decreased the complexity, connectivity, and modularity of microbial networks; however, these negative effects could be mitigated by co-existing MPs, particularly at elevated doses. Notably, PLA (10 %, w/w) exhibited greater harm to fungal communities and increased negative interactions between microbes and nutrient-cycling genes, posing unique risks compared to PE and PS. These findings demonstrate that MPs and nZnO interact synergistically, complicating ecological predictions and emphasizing the need to consider pollutant interactions in ecological risk assessments, particularly for biodegradable MPs.
Collapse
Affiliation(s)
- Jiao Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China; Shandong Vocational College of Science and Technology, Weifang, Shandong 261000, PR China
| | - Weiwei Yang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China
| | - Mingwei Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China
| | - Shuwu Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China
| | - Yuhuan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 266042, PR China.
| |
Collapse
|
2
|
Dar SA, Gani KM. Microplastic pollution in the glaciers, lakes, and rivers of the Hindu Kush Himalayas: Knowledge gaps and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 976:179304. [PMID: 40203747 DOI: 10.1016/j.scitotenv.2025.179304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/06/2025] [Accepted: 03/30/2025] [Indexed: 04/11/2025]
Abstract
The Hindu Kush Himalayas (HKH), often referred to as the Third Pole and the Water Tower of Asia, represents a vital geo-ecological asset, providing essential services to millions of people. However, this once-pristine environment is increasingly threatened by the influx of microplastics. This study provides a comprehensive overview of the current state of microplastic pollution in the HKH region, identifies key research gaps, and highlights areas for future research. A review of existing literature reveals the lack of standardized protocols for microplastics analysis, which hinders cross-study comparisons. The reported microplastic abundances vary widely across environmental matrices including 0.14-31,200 MPs m-3 in river water, 0.072-26,000 MPs kg-1 in river sediments, 180-5500 MPs kg-1 in lake sediments, 55-2380 MPs kg-1 in lake shoreline sediments, 30-871.34 MPs L-1 in glaciers, and 2.23-130 MPs L-1 in lake surface water. Polymer characterization using spectroscopic techniques has identified 54 polymer types across different environmental matrices in the HKH region with polypropylene (PP) being the most dominant, followed by polyethylene (PE), and polystyrene (PS). The sources of microplastics in the HKH region include both local activities and long-range atmospheric transport. Although research on microplastics in the region has gained momentum in recent years, significant knowledge gaps remain regarding their fate, degradation mechanisms, and environmental impacts. Further studies are essential to investigate the role of microplastics as light-absorbing impurities that may accelerate glacier melting, as well as their implications for biodiversity and human health in the region.
Collapse
Affiliation(s)
- Shahid Ahmad Dar
- Department of Civil Engineering, National Institute of Technology Srinagar, J&K 190006, India.
| | - Khalid Muzamil Gani
- Department of Civil Engineering, National Institute of Technology Srinagar, J&K 190006, India; Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban 4000, South Africa.
| |
Collapse
|
3
|
Wang Y, Zhang F, Yang L, Zhang G, Wang H, Zhu S, Zhang H, Guo T. Synergy of plastics and heavy metals weakened soil bacterial diversity by regulating microbial functions in the Qinghai-Tibet Plateau. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137241. [PMID: 39826456 DOI: 10.1016/j.jhazmat.2025.137241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/23/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
How plastics coupled with metals regulate microbial functions-diversity relationships remain unknown in plateau soil environment. Three representative catchments in the Qinghai-Tibet Plateau, focusing on microplastics, their plasticisers, and metals in soils, were investigated. This research explores responses of bacterial diversity and functions to the co-existence of target pollutants, and pathways by which target pollutants regulate the diversity. Soil bacterial beta diversity and functional genes exhibited negative correlations with phthalate esters across three catchments (p < 0.05). Dibutyl phthalate emerged as a primary factor affecting beta diversity, rather than the quantity of microplastics. Additionally, the synergy of cadmium and fiber-shaped microplastics exacerbated the impact on diversity. Structural equation modeling further elucidated that plastics, copper, and iron influenced nirK/nirS genes and phoD gene, subsequently affected cbbL/cbbM genes, and ultimately the diversity. In this context, microplastics, phthalate esters and copper, iron exerted antagonistic effects on one another. Consequently, the co-existence of plastics and cadmium weakened soil bacterial diversity in the Qinghai-Tibet Plateau by disrupting microbial functions, but micronutrients alleviated these negative impacts. This research reveals that the co-existence of plastics and metals regulates soil bacterial diversity in the Qinghai-Tibet Plateau, providing a valuable reference for the protection of microbial ecology in plateau regions.
Collapse
Affiliation(s)
- Yonglu Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengsong Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Lucun Yang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Guixiang Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, Shanxi Province 030024, China
| | - Huaxin Wang
- National Plateau Wetlands Research Center, Southwest Forestry University, Kunming 650224, China
| | - Shiliang Zhu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyu Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, Shanxi Province 030024, China
| | - Tingyu Guo
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, Shanxi Province 030024, China
| |
Collapse
|
4
|
Wang Y, Zhang F, Zhang G, Wang H, Zhu S, Zhang H, He T, Guo T. Trace metals coupled with plasticisers in microplastics strengthen the denitrification function of the soil microbiome in the Qinghai Tibetan Plateau. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134593. [PMID: 38749249 DOI: 10.1016/j.jhazmat.2024.134593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024]
Abstract
Due to the lack of research on the co-effects of microplastics and trace metals in the environment on nitrogen cycling-related functional microorganisms, the occurrence of microplastics and one of their plasticisers, phthalate esters, as well as trace metals, were determined in soils and river sediments in the Qinghai-Tibet Plateau. Relationship between microplastics and phthalate esters in the area was determined; the co-effects of these potentially toxic materials, and key factors and pathways affecting nitrogen functions were further explored. Significant correlations between fibre- and film-shaped microplastics and phthalate esters were detected in the soils from the plateau. Copper, lead, cadmium and di-n-octyl phthalate detected significantly affected nitrogen cycling-related functional microorganisms. The co-existence of di-n-octyl phthalate and copper in soils synergistically stimulated the expression of denitrification microorganisms nirS gene and "nitrate_reduction". Additionally, di-n-octyl phthalate and dimethyl phthalate more significantly affected the variation of nitrogen cycling-related functional genes than the number of microplastics. In a dimethyl phthalate- and cadmium-polluted area, nitrogen cycling-related functional genes, especially nirK gene, were more sensitive and stressed. Overall, phthalate esters originated from microplastics play a key role in nitrogen cycling-related functions than microplastics themselves, moreover, the synergy between di-n-octyl phthalate and copper strengthen the expression of denitrification functions.
Collapse
Affiliation(s)
- Yonglu Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengsong Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Guixiang Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China
| | - Huaxin Wang
- National Plateau Wetlands Research Center, Southwest Forestry University, Kunming 650224, China
| | - Shiliang Zhu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyu Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China
| | - Tiantian He
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China
| | - Tingyu Guo
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, China
| |
Collapse
|
5
|
Mishra S, Ren Y, Sun X, Lian Y, Singh AK, Sharma N. Microplastics pollution in the Asian water tower: Source, environmental distribution and proposed mitigation strategy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124247. [PMID: 38838812 DOI: 10.1016/j.envpol.2024.124247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/28/2024] [Accepted: 05/26/2024] [Indexed: 06/07/2024]
Abstract
Microplastics generated from fragmentation of leftover plastics and industrial waste has reached in the remotely located Asian water tower (AWT) region, the 3rd pole of earth and origin site of several freshwater rivers. The accumulation of microplastics in AWT ecosystem has potential to alter the climatic condition contributing in global warming and disturbing the biodiversity structural dynamics. The present paper provides a comprehensive critical discussion over quantitative assessment of microplastics in different ecosystems (i.e. river, lakes, sediment and snow or glacier) of AWT. The hydrodynamic fate and transport of microplastics and their ecological impact on hydromorphology and biodiversity of AWT has been exemplified. Furthermore, key challenges, perspectives and research directions are identified to mitigate microplastics associated problems. During survey, the coloured polyethylene and polyurethane fibers are the predominant microplastics found in most areas of AWT. These bio-accumulated MPs alter the rhizospheric community structure and deteriorate nitrogen fixation process in plants. Significance in climate change, MPs pollution is enhancing the emissions of greenhouse gases (NH3 by ∼34% and CH4 by ∼9%), contributing in global warming. Considering the seriousness of MPs pollution, this review study can enlighten the pathways to investigate the effect of MPs and to develop monitoring tools and sustainable remediation technologies with feasible regulatory strategies maintaining the natural significance of AWT region.
Collapse
Affiliation(s)
- Saurabh Mishra
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; Institute of Water Science and Technology, Hohai University, Nanjing, Jiangsu, 210098, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Yuling Ren
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Xiaonan Sun
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Yanqing Lian
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; Institute of Water Science and Technology, Hohai University, Nanjing, Jiangsu, 210098, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, Jiangsu, China.
| | - Anurag Kumar Singh
- University School of Chemical Technology, Guru Govind Singh Indraprastha University, Sector 16c Dwarka, New Delhi, 110078, India
| | - Niraj Sharma
- Transport Planning and Environment Division, CSIR-Central Road Research Institute, New Delhi, 110025, India
| |
Collapse
|
6
|
Adomako MO, Wu J, Lu Y, Adu D, Seshie VI, Yu FH. Potential synergy of microplastics and nitrogen enrichment on plant holobionts in wetland ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170160. [PMID: 38244627 DOI: 10.1016/j.scitotenv.2024.170160] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Wetland ecosystems are global hotspots for environmental contaminants, including microplastics (MPs) and nutrients such as nitrogen (N) and phosphorus (P). While MP and nutrient effects on host plants and their associated microbial communities at the individual level have been studied, their synergistic effects on a plant holobiont (i.e., a plant host plus its microbiota, such as bacteria and fungi) in wetland ecosystems are nearly unknown. As an ecological entity, plant holobionts play pivotal roles in biological nitrogen fixation, promote plant resilience and defense chemistry against pathogens, and enhance biogeochemical processes. We summarize evidence based on recent literature to elaborate on the potential synergy of MPs and nutrient enrichment on plant holobionts in wetland ecosystems. We provide a conceptual framework to explain the interplay of MPs, nutrients, and plant holobionts and discuss major pathways of MPs and nutrients into the wetland milieu. Moreover, we highlight the ecological consequences of loss of plant holobionts in wetland ecosystems and conclude with recommendations for pending questions that warrant urgent research. We found that nutrient enrichment promotes the recruitment of MPs-degraded microorganisms and accelerates microbially mediated degradation of MPs, modifying their distribution and toxicity impacts on plant holobionts in wetland ecosystems. Moreover, a loss of wetland plant holobionts via long-term MP-nutrient interactions may likely exacerbate the disruption of wetland ecosystems' capacity to offer nature-based solutions for climate change mitigation through soil organic C sequestration. In conclusion, MP and nutrient enrichment interactions represent a severe ecological risk that can disorganize plant holobionts and their taxonomic roles, leading to dysbiosis (i.e., the disintegration of a stable plant microbiome) and diminishing wetland ecosystems' integrity and multifunctionality.
Collapse
Affiliation(s)
- Michael Opoku Adomako
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China; School of Life Science, Taizhou University, Taizhou 318000, China
| | - Jing Wu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China; School of Life Science, Taizhou University, Taizhou 318000, China
| | - Ying Lu
- School of Life Science, Taizhou University, Taizhou 318000, China
| | - Daniel Adu
- School of Management Science and Engineering, Jiangsu University, Zhejiang 212013, Jiangsu, China
| | - Vivian Isabella Seshie
- Department of Environmental and Safety Engineering, University of Mines and Technology, Tarkwa, Ghana
| | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China; School of Life Science, Taizhou University, Taizhou 318000, China.
| |
Collapse
|
7
|
Wang Y, Zhang F, Liao X, Yang X, Zhang G, Zhang L, Wei C, Shi P, Wen J, Ju X, Xu C, Liu Y, Lan Y. Disturbance mitigation of thiencarbazone-methyl·isoxaflutole on bacterial communities through nitrification inhibitor and attapulgite. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122840. [PMID: 37926417 DOI: 10.1016/j.envpol.2023.122840] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/06/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
There is a knowledge gap in the interaction between the effects of herbicide thiencarbazone-methyl·isoxaflutole on soil microflora and environmental parameters, which leads to a lack of measures in mitigating damage to bacterial communities from the herbicide use. The impacts of thiencarbazone-methyl·isoxaflutole and soil parameters on the diversity, structure and functions of soil bacterial communities were clarified, and the effects and potential mitigation mechanisms of nitrapyrin and modified attapulgite with bacterial function intervention on bacterial communities were explored through incubation and field experiments. The results showed that as thiencarbazone-methyl·isoxaflutole application increased, the stress on soil bacterial community structure and diversity also increased. The relative abundance of bacteria including Aridibacter and GP7 and functional annotations including "nitrate_reduction" were significantly negatively correlated with thiencarbazone-methyl·isoxaflutole residues in soils. The remarkable toxic effects on the Adhaeribacter bacteria were detected at the recommended dose of thiencarbazone-methyl·isoxaflutole application. The residue of isoxaflutole (one of the effective ingredients of thiencarbazone-methyl·isoxaflutole) directly and more strongly affected the diversity of soil bacterial communities than thiencarbazone-methyl. Increasing soil pH was recognised as an important factor in improving the diversity and structure of soil microflora based on the results of the Mantel test and canonical correspondence analysis. Supplemental use of nitrapyrin or modified attapulgite was found to increase soil pH, and further improve the expression of "manganese oxidation" function annotation. This contributed to the increased bacterial diversity (Shannon index). Therefore, the disturbance of soil microflora caused by thiencarbazone-methyl·isoxaflutole application can be mitigated by the use of nitrapyrin and modified attapulgite through raising soil pH.
Collapse
Affiliation(s)
- Yonglu Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fengsong Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiaoyong Liao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guixiang Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi Province, China
| | - Liyun Zhang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| | - Chaojun Wei
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| | - Pengge Shi
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China
| | - Jiongxin Wen
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi Province, China
| | - Xiaorong Ju
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi Province, China
| | - Can Xu
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi Province, China
| | - Yang Liu
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, 161006, Heilongjiang Province, China
| | - Ying Lan
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, 161006, Heilongjiang Province, China
| |
Collapse
|