1
|
Silva QM, Palmieri MJ, Andrade-Vieira LF. Effects of a S-metolachlor based herbicide on two plant models: Zea mays L. and Lactuca sativa L. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:719-729. [PMID: 38884257 DOI: 10.1080/15287394.2024.2367621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Corn is the second most cultivated crop in Brazil, the number-one country in pesticide consumption. Chemical control of weeds is performed using herbicides such as S-metolachlor with pre- and post-emergence action and thus the toxicity of herbicides constitutes a matter of great concern. The present investigation aimed to examine the effects of an S-metolachlor-based herbicide on Lactuca sativa L. (lettuce) and Zea mays L. (maize) utilizing various bioassays. The test solutions were prepared from commercial products containing the active ingredient. Seeds from the plant models were exposed in petri dishes and maintained under biochemical oxygen demand (BOD) at 24°C. Distilled water was negative and aluminium positive control. Macroscopic analyses (germination and growth) were conducted for both plant species, and microscopic analysis (cell cycle and chromosomal alterations) were performed for L. sativa root tip cells. Detrimental interference of S-metolachlor-based herbicide was noted with lettuce for all parameters tested reducing plant germination by over 50% and the germination speed by over 45% and showing a significant decrease in mitotic index, from 16.25% to 9,28% even on the lowest concentration tested. In maize, there was no significant interference in plant germination; however, speed of germination was significantly hampered, reaching a 51.22% reduction for the highest concentration tested. Data demonstrated that the herbicide was toxic as evidenced by its phyto- and cytotoxicity in L. sativa L. and Z. mays L.
Collapse
Affiliation(s)
- Quenia Maria Silva
- Department of Ecology and Conservation, Natural Science Institute, Federal University of Lavras, Lavras, Brazil
| | - Marcel José Palmieri
- Department of Ecology and Conservation, Natural Science Institute, Federal University of Lavras, Lavras, Brazil
| | | |
Collapse
|
2
|
Shirin J, Chen Y, Hussain Shah A, Da Y, Zhou G, Sun Q. Micro plastic driving changes in the soil microbes and lettuce growth under the influence of heavy metals contaminated soil. FRONTIERS IN PLANT SCIENCE 2024; 15:1427166. [PMID: 39323532 PMCID: PMC11422782 DOI: 10.3389/fpls.2024.1427166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/30/2024] [Indexed: 09/27/2024]
Abstract
Microplastics (MPs) have garnered global attention as emerging contaminants due to their adaptability, durability, and robustness in various ecosystems. Still, studies concerning their combination with heavy metals (HMs), their interactions with soil biota, and how they affect soil physiochemical properties and terrestrial plant systems are limited. Our study was set to investigate the combined effect of HMs (cadmium, arsenic, copper, zinc and lead) contaminated soil of Tongling and different sizes (T1 = 106 µm, T2 = 50 µm, and T3 = 13 µm) of polystyrene microplastics on the soil physiochemical attributes, both bacterial and fungal diversity, compositions, AMF (arbuscular mycorrhizal fungi), plant pathogens in the soil, and their effect on Lactuca sativa by conducting a greenhouse experiment. According to our results, the combination of HMs and polystyrene microplastic (PS-MPs), especially the smaller PS-MPs (T3), was more lethal for the lettuce growth, microbes and soil. The toxicity of combined contaminants directly reduced the physio-biochemical attributes of lettuce, altered the lettuce's antioxidant activity and soil health. T3 at the final point led to a significant increase in bacterial and fungal diversity. In contrast, overall bacterial diversity was higher in the rhizosphere, and fungal diversity was higher in the bulk soil. Moreover, the decrease in MPs size played an important role in decreasing AMF and increasing both bacterial and fungal pathogens, especially in the rhizosphere soil. Functional prediction was found to be significantly different in the control treatment, with larger MPs compared to smaller PS-MPs. Environmental factors also played an important role in the alteration of the microbial community. This study also demonstrated that the varied distribution of microbial populations could be an ecological indicator for tracking the environmental health of soil. Overall, our work showed that the combination of HMs and smaller sizes of MPs was more lethal for the soil biota and lettuce and also raised many questions for further studying the ecological risk of PS-MPs and HMs.
Collapse
Affiliation(s)
- Jazbia Shirin
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Yongjing Chen
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Azhar Hussain Shah
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
| | - Yanmei Da
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Guowei Zhou
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Qingye Sun
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| |
Collapse
|
3
|
Li W, He E, Van Gestel CAM, Peijnenburg WJGM, Chen G, Liu X, Zhu D, Qiu H. Pioneer plants enhance soil multifunctionality by reshaping underground multitrophic community during natural succession of an abandoned rare earth mine tailing. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134450. [PMID: 38701726 DOI: 10.1016/j.jhazmat.2024.134450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/27/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Spontaneous natural succession in metal mine tailings is fundamental to the rehabilitation of bare tailing. Here, an abandoned rare earth element (REE) mine tailing with spontaneous colonisation by pioneer plants with different functional traits was selected. Soil nutrient cycling, fertility, organic matter decomposition as well as underground organismal communities and their multitrophic networks were investigated. Compared with the bare tailing, the colonisation with Lycopodium japonicum, Miscanthus sinensis, and Dicranopteris dichotoma increased soil multifunction by 222%, 293%, and 525%, respectively. This was accompanied by significant changes in soil bacterial and protistan community composition and increased soil multitrophic network complexity. Rhizospheres of different plant species showed distinct microbial community composition compared to that of bare tailing. Some WPS-2, Chloroflexi, and Chlorophyta were mainly present in the bare tailing, while some Proteobacteria and Cercozoa were predominantly seen in the rhizosphere. Pearson correlation and Random Forest revealed the biotic factors driving soil multifunction. Structural equation modelling further revealed that pioneer plants improved soil multifunction primarily by decreasing the microbial biodiversity and increasing the multitrophic network complexity. Overall, this highlights the importance of subterrestrial organisms in accelerating soil rehabilitation during natural succession and provides options for the ecological restoration of degraded REE mining areas.
Collapse
Affiliation(s)
- Wenxing Li
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China.
| | - Cornelis A M Van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 Hz, the Netherlands
| | | | - Guangquan Chen
- Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Xiaorui Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Chen L, Chang N, Qiu T, Wang N, Cui Q, Zhao S, Huang F, Chen H, Zeng Y, Dong F, Fang L. Meta-analysis of impacts of microplastics on plant heavy metal(loid) accumulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123787. [PMID: 38548159 DOI: 10.1016/j.envpol.2024.123787] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 04/07/2024]
Abstract
The co-occurrence of microplastics (MPs) and heavy metal(loid)s (HMs) has attracted growing scientific interest because of their wide distribution and environmental toxicity. Nevertheless, the interactions between MPs and HMs in soil-plant systems remain unclear. We conducted a meta-analysis with 3226 observations from 87 independent studies to quantify the impact of MPs addition on the plant biomass and HMS accumulation. Co-occurrence of MPs and HMs (except for As) induced synergistic toxicity to plant growth. MPs promoted their uptake in the shoot by 11.0% for Cd, 30.0% for Pb, and 47.1% for Cu, respectively. In contrast, MPs caused a significant decrease (22.6%, 17.9-26.9%) in the shoot As accumulation. The type and dose of MPs were correlated with the accumulation of HMs. MPs increased available concentrations of Cd, Pb, and Cu, but decreased available As concentration in soils. Meanwhile, MPs addition significantly lowered soil pH. These findings may provide explanations for MPs-mediated effects on influencing the accumulation of HMs in plants. Using a machine learning approach, we revealed that soil pH and total HMs concentration are the major contributors affecting their accumulation in shoot. Overall, our study indicated that MPs may increase the environmental risks of HMs in agroecosystems, especially metal cations.
Collapse
Affiliation(s)
- Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Nan Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Na Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Qingliang Cui
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Shuling Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Fengyu Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; College of Environment and Resources, Southwest University of Science & Technology, Mianyang, 621010, China
| | - Hansong Chen
- College of Xingzhi, Zhejiang Normal University, Jinhua, 321000, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Faqin Dong
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, 621010, China
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
5
|
Luo Y, Xing R, Wan Z, Chen Y. Vertical distribution of nutrients, enzyme activities, microbial properties, and heavy metals in zinc smelting slag site revegetated with two herb species: Implications for direct revegetation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163206. [PMID: 37011682 DOI: 10.1016/j.scitotenv.2023.163206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023]
Abstract
Direct revegetation is an important measure to immobilize heavy metals and improve the microecological properties of metal smelting slag sites. However, the vertical distribution of nutrients, microecological properties, and heavy metals at a directly revegetated metal smelting slag site remains unclear. Here, the distribution characteristics of nutrients, enzyme activities, microbial properties, and heavy metals in the vertical profile at a zinc smelting slag site directly revegetated with two herb species (Lolium perenne and Trifolium repens) for 5 years were investigated. The results showed that the nutrient contents, enzyme activities, and microbial properties decreased with increasing slag depth after revegetation with the two herb species. The nutrient contents, enzyme activities, and microbial properties of the surface slag revegetated with Trifolium repens were better than those in the surface slag revegetated with Lolium perenne. The higher root activity in the surface slag (0-30 cm) resulted in relatively higher contents of pseudo-total and available heavy metals in the surface slag. Moreover, the contents of pseudo-total heavy metals (except for Zn) and available heavy metals in the slag revegetated with Trifolium repens were lower than those in the slag revegetated with Lolium perenne at most slag depths. Overall, the greater phytoremediation efficiency of the two herb species occurred mainly in the surface slag (0-30 cm), and the phytoremediation efficiency of Trifolium repens was higher than that of Lolium perenne. The findings are beneficial for understanding the phytoremediation efficiency of direct revegetation strategies for metal smelting slag sites.
Collapse
Affiliation(s)
- Youfa Luo
- Key Laboratory of Kast Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Hostile Environment Ecological Restoration Technology Engineering Research Centre, Guizhou University, Guiyang 550025, China.
| | - Rongrong Xing
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Zuyan Wan
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Yulu Chen
- Key Laboratory of Kast Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|