1
|
Wang J, Cai R, Hu Z, Cai L, Wu J. Study on the Interaction Effect of Heavy Metal Cadmium in Soil-Plant System Controlled by Biochar and Nano-Zero-Valent Iron. Int J Mol Sci 2025; 26:4373. [PMID: 40362612 PMCID: PMC12072827 DOI: 10.3390/ijms26094373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 05/01/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
The accumulation of heavy metal cadmium (Cd) in farmland soil in edible parts of crops seriously threatens plant growth, human health, and even the global ecological environment. Finding stabilization remediation technology is an important means to treat Cd-contaminated soil. This study comprehensively evaluated the synergistic effects of independent or combined application of biochar (BC) (10, 30 g kg-1) and nano zero-valent iron (nZVI) (0.1% w/w) on soil properties and morphological and physiological traits of pakchoi (Brassica rapa L. subsp. chinensis) under Cd (1, 3 mg kg-1) stress by pot experiments. It was shown that Cd toxicity negatively affected soil properties, reduced pakchoi biomass and total chlorophyll content, and increased oxidative stress levels. On the contrary, the combined application of BC (30 g kg-1) and nZVI (0.1%, w/w) reduced the Cd accumulation in the shoot parts of pakchoi from 0.78 mg·kg-1 to 0.11 mg·kg-1, which was lower than the Cd limit standard of leafy vegetables (0.20 mg kg-1) in GB 2762-2017 "National Food Safety Standard". Compared with the control, the treatment group achieved a 61.66% increase in biomass and a 105.56% increase in total chlorophyll content. At the same time, the activities of catalase (CAT) and superoxide dismutase (SOD) increased by 34.86% and 44.57%, respectively, and the content of malondialdehyde (MDA) decreased by 71.27%. In addition, the application of BC alone (30 g·kg-1) increased the soil pH value by 0.43 units and the organic carbon (SOC) content by 37.82%. Overall, the synergistic effect of BC (30 g kg-1) and nZVI (0.1% w/w) helped to restore soil homeostasis and inhibit the biotoxicity of Cd, which provided a new option for soil heavy metal remediation and crop toxicity mitigation.
Collapse
Affiliation(s)
- Jiarui Wang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; (J.W.); (Z.H.)
- Key Laboratory of Dry Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Rangzhuoma Cai
- Key Laboratory of Dry Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhaozhao Hu
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; (J.W.); (Z.H.)
- Key Laboratory of Dry Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Liqun Cai
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; (J.W.); (Z.H.)
- Key Laboratory of Dry Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Jun Wu
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China; (J.W.); (Z.H.)
- Key Laboratory of Dry Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
| |
Collapse
|
2
|
Bu A, Yao G, Zhou C, Mao Z, Liu B, Ma J, Fang X, Liu D, Ye Z. Effect of AC electric field on enhancing phytoremediation of Cd-contaminated soils in different pH soils. Sci Rep 2024; 14:18035. [PMID: 39098964 PMCID: PMC11298512 DOI: 10.1038/s41598-024-68671-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024] Open
Abstract
To increase the efficiency of phytoremediation to clean up heavy metals in soil, assisted with alternating current (AC) electric field technology is a promising choice. Our experiments utilized the hyperaccumulator Sedum alfredii Hance and the fast-growing, high-biomass willow (Salix sp.). We investigated the efficiency of AC field combined with S. alfredii-willow intercropping for removing Cd from soils with different pH values. In the AC electric field treatment with S. alfredii-willow intercropping, the available Cd content in acidic soil increased by 50.00% compared to the control, and in alkaline soil, the increase was 100.00%. Furthermore, AC electric field promoted Cd uptake by plants in both acidic and alkaline soils, with Cd accumulation in the aboveground increased by 20.52% (P < 0.05) and 11.73%, respectively. In conclusion, the integration of AC electric fields with phytoremediation demonstrates significant favorable effectiveness.
Collapse
Affiliation(s)
- Aiai Bu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, 311300, Hangzhou, China
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Zhejiang, 311300, Hangzhou, China
| | - Guihua Yao
- Jiashan County Agricultural and Rural Burean, Zhejiang, 314000, Jiaxing, China
| | - Chuikang Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, 311300, Hangzhou, China
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Zhejiang, 311300, Hangzhou, China
| | - Zhansheng Mao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, 311300, Hangzhou, China
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Zhejiang, 311300, Hangzhou, China
| | - Bo Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, 311300, Hangzhou, China
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Zhejiang, 311300, Hangzhou, China
| | - Jiawei Ma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, 311300, Hangzhou, China
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Zhejiang, 311300, Hangzhou, China
| | - Xianzhi Fang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, 311300, Hangzhou, China
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Zhejiang, 311300, Hangzhou, China
| | - Dan Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, 311300, Hangzhou, China
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Zhejiang, 311300, Hangzhou, China
| | - Zhengqian Ye
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, 311300, Hangzhou, China.
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Zhejiang, 311300, Hangzhou, China.
| |
Collapse
|
3
|
Rashid MS, Wang Y, Yin Y, Yousaf B, Jiang S, Mirza AF, Chen B, Li X, Liu Z. Quantitative Soil Characterization for Biochar-Cd Adsorption: Machine Learning Prediction Models for Cd Transformation and Immobilization. TOXICS 2024; 12:535. [PMID: 39195637 PMCID: PMC11359006 DOI: 10.3390/toxics12080535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
Soil pollution with cadmium (Cd) poses serious health and environmental consequences. The study investigated the incubation of several soil samples and conducted quantitative soil characterization to assess the influence of biochar (BC) on Cd adsorption. The aim was to develop predictive models for Cd concentrations using statistical and modeling approaches dependent on soil characteristics. The potential risk linked to the transformation and immobilization of Cd adsorption by BC in the soil could be conservatively assessed by pH, clay, cation exchange capacity, organic carbon, and electrical conductivity. In this study, Long Short-Term Memory (LSTM), Bidirectional Gated Recurrent Unit (BiGRU), and 5-layer CNN Convolutional Neural Networks (CNNs) were applied for risk assessments to establish a framework for evaluating Cd risk in BC amended soils to predict Cd transformation. In the case of control soils (CK), the BiGRU model showed commendable performance, with an R2 value of 0.85, indicating an approximate 85.37% variance in the actual Cd. The LSTM model, which incorporates sequence data, produced less accurate results (R2=0.84), while the 5-layer CNN model had an R2 value of 0.91, indicating that the CNN model could account for over 91% of the variation in actual Cd levels. In the case of BC-applied soils, the BiGRU model demonstrated a strong correlation between predicted and actual values with R2 (0.93), indicating that the model explained 93.21% of the variance in Cd concentrations. Similarly, the LSTM model showed a notable increase in performance with BC-treated soil data. The R2 value for this model stands at a robust R2 (0.94), reflecting its enhanced ability to predict Cd levels with BC incorporation. Outperforming both recurrent models, the 5-layer CNN model attained the highest precision with an R2 value of 0.95, suggesting that 95.58% of the variance in the actual Cd data can be explained by the CNN model's predictions in BC-amended soils. Consequently, this study suggests developing ecological soil remediation strategies that can effectively manage heavy metal pollution in soils for environmental sustainability.
Collapse
Affiliation(s)
- Muhammad Saqib Rashid
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.S.R.); (Y.W.); (Y.Y.); (S.J.)
| | - Yanhong Wang
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.S.R.); (Y.W.); (Y.Y.); (S.J.)
| | - Yilong Yin
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.S.R.); (Y.W.); (Y.Y.); (S.J.)
| | - Balal Yousaf
- Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Shaojun Jiang
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.S.R.); (Y.W.); (Y.Y.); (S.J.)
| | - Adeel Feroz Mirza
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Bing Chen
- Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China;
| | - Xiang Li
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.S.R.); (Y.W.); (Y.Y.); (S.J.)
| | - Zhongzhen Liu
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (M.S.R.); (Y.W.); (Y.Y.); (S.J.)
| |
Collapse
|
4
|
Yang X, Hou R, Fu Q, Li T, Li M, Cui S, Li Q, Liu M. A critical review of biochar as an environmental functional material in soil ecosystems for migration and transformation mechanisms and ecological risk assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121196. [PMID: 38763117 DOI: 10.1016/j.jenvman.2024.121196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
At present, biochar has a large application potential in soil amelioration, pollution remediation, carbon sequestration and emission reduction, and research on the effect of biochar on soil ecology and environment has made positive progress. However, under natural and anthropogenic perturbations, biochar may undergo a series of environmental behaviors such as migratory transformation, mineralization and decomposition, and synergistic transport, thus posing certain potential risks. This paper outlines the multi-interfacial migration pathway of biochar in "air-soil-plant-animal-water", and analyzes the migration process and mechanism at different interfaces during the preparation, transportation and application of biochar. The two stages of the biochar mineralization process (mineralization of easily degradable aliphatic carbon components in the early stage and mineralization of relatively stable aromatic carbon components in the later stage) were described, the self-influencing factors and external environmental factors of biochar mineralization were analyzed, and the mineral stabilization mechanism and positive/negative excitation effects of biochar into the soil were elucidated. The proximity between field natural and artificially simulated aging of biochar were analyzed, and the change of its properties showed a trend of biological aging > chemical aging > physical aging > natural aging, and in order to improve the simulation and prediction, the artificially simulated aging party needs to be changed from a qualitative method to a quantitative method. The technical advantages, application scope and potential drawbacks of different biochar modification methods were compared, and biological modification can create new materials with enhanced environmental application. The stability performance of modified biochar was compared, indicating that raw materials, pyrolysis temperature and modification method were the key factors affecting the stability of biochar. The potential risks to the soil environment from different pollutants carried by biochar were summarized, the levels of pollutants released from biochar in the soil environment were highlighted, and a comprehensive selection of ecological risk assessment methods was suggested in terms of evaluation requirements, data acquisition and operation difficulty. Dynamic tracing of migration decomposition behavior, long-term assessment of pollution remediation effects, and directional design of modified composite biochar materials were proposed as scientific issues worthy of focused attention. The results can provide a certain reference basis for the theoretical research and technological development of biochar.
Collapse
Affiliation(s)
- Xuechen Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Renjie Hou
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Tianxiao Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Mo Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Song Cui
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Qinglin Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Mingxuan Liu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| |
Collapse
|
5
|
Yang W, Sun T, Sun Y. Adsorption mechanism of Cd 2+ on microbial inoculant and its potential for remediation Cd-polluted farmland soils. CHEMOSPHERE 2024; 352:141349. [PMID: 38307335 DOI: 10.1016/j.chemosphere.2024.141349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
The adsorption characteristics and mechanism of Cd2+ on microbial inoculant (MI) mainly composed of Bacillus subtilis, Bacillus thuringiensis and Bacillus amyloliquefaciens, and its potential for remediation Cd polluted soils through batch adsorption and soil incubation experiments. It was found that the Freundlich isotherm model and the pseudo-second-order kinetics were more in line with the adsorption processes of Cd2+. The maximum adsorption capacity predicted by Langmuir isotherm model suggested that of MI was 57.38 mg g-1. Scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS) images exhibited the surface structure of MI was damaged to varying degrees after adsorption, and Cd element was distributed on the surface of MI through ion exchange. X-ray diffraction (XRD) results showed that CdCO3 was formed on the surface of MI. Moreover, the functional groups (-OH, C-H, and -NH) involved in the adsorption of Cd2+ through fourier transform infrared spectroscopy (FTIR). After applying MI to Cd-contaminated soil, it was found that soil pH, conductivity (EC) and soil organic matter (SOM) increased by 0.84 %-2.43 %, 31.6 %-241.48 %, and 8.11 %-24.1 %, respectively, when compared with the control treatments. The content of DTPA-Cd in the soils was significantly (P < 0.05) reduced by 15.48 %-29.68 % in contrast with CK, and the Cd speciation was transformed into a more stable residual fraction. The activities of urease, phosphatase and sucrose were increased by 3.5 %-45.18 %, 57.00 %-134.18 % and 52.51 %-70.52 %, respectively, compared with CK. Therefore, MI could be used as an ecofriendly and sustainable material for bioremediation of Cd-contaminated soils.
Collapse
Affiliation(s)
- Wenhao Yang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA)/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China; College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Tong Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA)/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China; College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
6
|
Sun X, Wang J, Zhang M, Liu Z, E Y, Meng J, He T. Combined application of biochar and sulfur alleviates cadmium toxicity in rice by affecting root gene expression and iron plaque accumulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115596. [PMID: 37839192 DOI: 10.1016/j.ecoenv.2023.115596] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Biochar and sulfur are considered useful amendments for soil cadmium (Cd) contamination remediation. However, there is still a gap in the understanding of how combined biochar and sulfur application affects Cd resistance in rice, and the role of the accumulation of iron plaque and the expression of Cd efflux transporter-related genes are still unclear in this type of treatment. In this study, we screened an effective combination of biochar and sulfur (0.75 % biochar, 60 mg/kg sulfur) that significantly reduced the Cd content of rice roots (32.9 %) and shoots (12.3 %); significantly reduced the accumulation of amino acids and their derivatives, organic acids and their derivatives and flavonoids in rice roots; and altered secondary metabolite production and release. This combined biochar and sulfur application alleviated the toxicity of Cd to rice, in which the enhancement of iron plaque (24.8 %) formation and upregulated expression of heavy metal effector genes (NRAMP3, MTP3, ZIP1) were important factors. These findings show that iron plaque and heavy metal transport genes are involved in the detoxification of rice under the combined application of biochar and sulfur, which provides useful information for the combined treatment of soil Cd pollution.
Collapse
Affiliation(s)
- Xiaoxue Sun
- National Biochar Institute, Agronomy College, Shenyang Agricultural University, Key Laboratory of Biochar and Soil Amelioration, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Jiangnan Wang
- National Biochar Institute, Agronomy College, Shenyang Agricultural University, Key Laboratory of Biochar and Soil Amelioration, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Miao Zhang
- National Biochar Institute, Agronomy College, Shenyang Agricultural University, Key Laboratory of Biochar and Soil Amelioration, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Zunqi Liu
- National Biochar Institute, Agronomy College, Shenyang Agricultural University, Key Laboratory of Biochar and Soil Amelioration, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Yang E
- National Biochar Institute, Agronomy College, Shenyang Agricultural University, Key Laboratory of Biochar and Soil Amelioration, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Jun Meng
- National Biochar Institute, Agronomy College, Shenyang Agricultural University, Key Laboratory of Biochar and Soil Amelioration, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Tianyi He
- National Biochar Institute, Agronomy College, Shenyang Agricultural University, Key Laboratory of Biochar and Soil Amelioration, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China.
| |
Collapse
|