1
|
Famiyeh L, Chen K, Tesema FB, Kelly C, Ji D, Xiao H, Tong L, Wang Z, He J. Refining source-specific lung cancer risk assessment from PM 2.5-bound PAHs: Integrating component-based potency factors and machine learning in Ningbo, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 297:118174. [PMID: 40286738 DOI: 10.1016/j.ecoenv.2025.118174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/08/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
The component-based potency factor approach, combined with benzo[a]pyrene (BaP) unit risk values from the World Health Organization (WHO), is commonly used to assess lung excess cancer risk (LECR) from polycyclic aromatic hydrocarbons (PAHs). However, this method may overestimate LECR, particularly when highly carcinogenic PAHs are included. In this study, we employed BaP unit risk values from both the WHO and the Environmental Protection Agency (EPA) to estimate LECR in Ningbo, China, revealing that incorporating high-carcinogenic PAHs into the component-based potency factor approach, along with WHO unit risk factors, leads to an overestimation of LECR by more than tenfold. We identified a moderate PAH exposure risk level (>1.0 ×10⁻⁶) in Ningbo and used advanced machine learning (ML) algorithms, random forest (RF), extremely randomized trees (ERT), and extreme gradient boosting (XGBoost), to improve the accuracy of source-specific LECR assessments. ERT emerged as the most robust algorithm, identifying industrial emissions, coal combustion, and gasoline engine exhaust as the primary contributors to elevated LECR in Ningbo. This study underscores the need for precise, source-specific LECR estimation to effectively mitigate PAH pollution and reduce lung cancer risks. By integrating ML techniques into risk assessment methodologies, we provide a robust framework for global application, enhancing public health protection. Our findings also highlight the importance of refining risk evaluation strategies and pave the way for future research to validate and adapt these models in diverse environmental settings.
Collapse
Affiliation(s)
- Lord Famiyeh
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Ke Chen
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China; Zhejiang Institute of Meteorological Sciences, Hangzhou 310017, China
| | - Fiseha Berhanu Tesema
- School of Computer Science, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Celeb Kelly
- Department of Civil Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Dongsheng Ji
- State Kay Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Hang Xiao
- Ningbo (Beilun) Zhongke Haixi Industrial Technology Innovation Center, Ningbo 318825, China
| | - Lei Tong
- Ningbo (Beilun) Zhongke Haixi Industrial Technology Innovation Center, Ningbo 318825, China
| | - Zongshuang Wang
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Jun He
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China.
| |
Collapse
|
2
|
Lee SJ, Cho IG, Lee HY, Ju JT, Shin HJ, Choi SD. Development of a comprehensive air risk index and its application to high spatial-temporal health risk assessment in a large industrial city. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125545. [PMID: 39701364 DOI: 10.1016/j.envpol.2024.125545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
Particulate matter (PM) contains various hazardous air pollutants (HAPs) that can adversely affect human health, highlighting the need for an integrated index to represent the associated health risks. In response, this study developed a novel index, the comprehensive air-risk index (CARI), for Ulsan, the largest industrial city in South Korea. This index integrates toxicity-weighted concentrations of polycyclic aromatic hydrocarbons (PAHs) and heavy metals using their inhalation unit risks. CARI was categorized into four risk levels based on probabilistic health risks. Over eight years (2013-2020) in Ulsan, the risk from PAH exposure showed a decreasing trend, whereas the risk from heavy metals remained stable, reflecting different emission patterns and major source types. PAHs and heavy metals contributed 38.1% and 61.9% to CARI, respectively, highlighting the greater impact of heavy metals on human health. Unlike the monthly variations in PM2.5 concentrations, CARI values tended to increase in the summer and decrease in the spring and fall, indicating the impact of local emissions, particularly from petrochemical and non-ferrous industrial facilities. Moreover, a machine learning model enhanced the spatio-temporal resolution of CARI, showing that 'unhealthy' days were 2.4 times more frequent in industrial areas than in urban areas. In conclusion, CARI is a promising tool for assessing health risks in industrial cities and for developing risk-based management plans. Furthermore, we propose the development of a national-scale real-time CARI system by enhancing the spatio-temporal resolution of HAP data through the use of machine learning.
Collapse
Affiliation(s)
- Sang-Jin Lee
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; Research and Management Center for Particulate Matter in the Southeast Region of Korea, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - In-Gyu Cho
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; Research and Management Center for Particulate Matter in the Southeast Region of Korea, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ho-Young Lee
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; Research and Management Center for Particulate Matter in the Southeast Region of Korea, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jeong-Tae Ju
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; Research and Management Center for Particulate Matter in the Southeast Region of Korea, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hye-Jung Shin
- Air Quality Research Division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Sung-Deuk Choi
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea; Research and Management Center for Particulate Matter in the Southeast Region of Korea, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
3
|
Intharuksa A, Arunotayanun W, Takuathung MN, Boongla Y, Chaichit S, Khamnuan S, Prasansuklab A. Therapeutic Potential of Herbal Medicines in Combating Particulate Matter (PM)-Induced Health Effects: Insights from Recent Studies. Antioxidants (Basel) 2024; 14:23. [PMID: 39857357 PMCID: PMC11762796 DOI: 10.3390/antiox14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Particulate matter (PM), particularly fine (PM2.5) and ultrafine (PM0.1) particles, originates from both natural and anthropogenic sources, such as biomass burning and vehicle emissions. These particles contain harmful compounds that pose significant health risks. Upon inhalation, ingestion, or dermal contact, PM can penetrate biological systems, inducing oxidative stress, inflammation, and DNA damage, which contribute to a range of health complications. This review comprehensively examines the protective potential of natural products against PM-induced health issues across various physiological systems, including the respiratory, cardiovascular, skin, neurological, gastrointestinal, and ocular systems. It provides valuable insights into the health risks associated with PM exposure and highlights the therapeutic promise of herbal medicines by focusing on the natural products that have demonstrated protective properties in both in vitro and in vivo PM2.5-induced models. Numerous herbal medicines and phytochemicals have shown efficacy in mitigating PM-induced cellular damage through their ability to counteract oxidative stress, suppress pro-inflammatory responses, and enhance cellular defense mechanisms. These combined actions collectively protect tissues from PM-related damage and dysfunction. This review establishes a foundation for future research and the development of effective interventions to combat PM-related health issues. However, further studies, including in vivo and clinical trials, are essential to evaluate the safety, optimal dosages, and long-term effectiveness of herbal treatments for patients under chronic PM exposure.
Collapse
Affiliation(s)
- Aekkhaluck Intharuksa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.I.); (S.C.)
| | - Warunya Arunotayanun
- Kanchanabhishek Institute of Medical and Public Health Technology, Faculty of Public Health and Allied Health Science, Praboromarajchanok Institute, Nonthaburi 11150, Thailand
| | - Mingkwan Na Takuathung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yaowatat Boongla
- Department of Sustainable Development Technology, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand;
| | - Siripat Chaichit
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.I.); (S.C.)
| | - Suthiwat Khamnuan
- Faculty of Pharmacy, Western University, Pathum Thani 12150, Thailand;
| | - Anchalee Prasansuklab
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Diao L, Xu Z, Song D, Zhu C, Li X, Zhou X, Jing X, Yu L, Liu B. Dry deposition fluxes and inhalation risks of toxic elements in total suspended particles in the Bohai Rim region: Long-term trends and potential sources. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134692. [PMID: 38810575 DOI: 10.1016/j.jhazmat.2024.134692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/23/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Long-term changes in dry deposition fluxes (DDF) and health risks for toxic elements (TE) in total suspended particles (TSP) in the Bohai Rim region are important for assessing control effects of pollution sources. Thus, we investigated the trends in DDF and concentrations for TSP and TE and health risks of TE in eight cities in the region from 2011-2020. TSP concentration and DDF showed general downward trends. Compared to the before Clear Air Action Plan (BCAAP, 2011-2012) period, concentration and DDF of TE over the Clear Air Action Plan (CAAP, 2013-2017) period substantially decreased, with the highest decrease rates in Zn, Cd, and Cr. During the study period, non-carcinogenic (HI) and total carcinogenic (TCR) risks for children and adults were 0.09 and 0.04, and 1.54 × 10-5 and 2.65 × 10-5, respectively, with Cr6+ and As being dominant contributors. Compared to the BCAAP period, HI and TCR over the CAAP period decreased by 36.8 % and 32.4 %, respectively. However, their risks increased over the Blue Sky Protection Campaign (BSPC, 2018-2020) period. Potential source contribution function suggested substantial changes in potential risk areas over different control periods, with the BSPC primarily being on land and the Yellow Sea.
Collapse
Affiliation(s)
- Liuli Diao
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Zizhou Xu
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Derui Song
- National Marine Environmental Monitoring Center, Dalian 116023, China.
| | - Cheng Zhu
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Xuchun Li
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Xiaoyu Zhou
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Xindi Jing
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Limin Yu
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Baoshuang Liu
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China.
| |
Collapse
|
5
|
Soares MP, Silva LM, De Angelis CF, Cardoso IL, Taylor EW, da Costa Souza I, Bendhack F, de Souza Vieira N, Monferrán MV, Wunderlin DA, Fernandes MN, Leite CAC. Effect of acute exposure to settleable atmospheric particulate matter emitted by the steel industry on hematology and innate immunity of fat snook (Centropomus parallelus). MARINE POLLUTION BULLETIN 2024; 203:116428. [PMID: 38735170 DOI: 10.1016/j.marpolbul.2024.116428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024]
Abstract
The steel industry is a significant worldwide source of atmospheric particulate matter (PM). Part of PM may settle (SePM) and deposit metal/metalloid and metallic nanoparticles in aquatic ecosystems. However, such an air-to-water cross-contamination is not observed by most monitoring agencies. The region of Vitoria City is the main location of iron processing for exports in Brazil, and it has rivers, estuaries, and coastal areas affected by SePM. We have evaluated the effects of SePM on a local representative fish species, the fat snook, Centropomus parallelus. After acclimation, 48 fishes (61.67 ± 27.83 g) were individually exposed for 96 h to diverse levels of SePM (0.0, 0.01, 0.1 and 1 g/L-1). The presence of metals in the blood and several blood biomarkers were analyzed to evaluate the impact of SePM on stress signaling, blood oxygen transport capacity, and innate immune activity. Metal bioaccumulation was measured from blood in two separately analyzed compartments: intracellular (erythrocytes plus white blood cells) and extracellular (plasma). The major metals present at all contamination levels in both compartments were Fe and Zn, followed by Al and Cu, plus traces of 'Emerging metals': Ba, Ce, La, Rb, Se, Sr, and Ti. Emerging metals refer to those that have recently been identified in water as contaminants, encompassing rare earth elements and critical technology elements, as documented in previous studies (See REEs and TCEs in Cobelo-García et al., 2015; Batley et al., 2022). Multivariate analysis revealed that SePM had strong, dose-dependent correlations with all biomarker groups and indicated that blood oxygen-carrying capacity had the highest contamination responsiveness. Metal contamination also increased cortisol and blood glucose levels, attesting to increased stress signaling, and had a negative effect on innate immune activity. Knowledge of the risks related to SePM contamination remains rudimentary. However, the fact that there was metal bioaccumulation, causing impairment of fundamental physiological and cellular processes in this ecologically relevant fish species, consumed by the local human population, highlights the pressing need for further monitoring and eventual control of SePM contamination.
Collapse
Affiliation(s)
- Michelly Pereira Soares
- Department of Physiological Sciences, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil.
| | - Ludmila Mendes Silva
- Department of Physiological Sciences, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil.
| | - Carolina Fernandes De Angelis
- Department of Physiological Sciences, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil
| | - Israel Luz Cardoso
- Department of Physiological Sciences, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil
| | - Edwin W Taylor
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Iara da Costa Souza
- Department of Physiological Sciences, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil
| | - Fabiano Bendhack
- Center for Marine Studies, Federal University of Paraná - UFPR, Pontal do Paraná, PR, Brazil.
| | - Nathan de Souza Vieira
- Center for Marine Studies, Federal University of Paraná - UFPR, Pontal do Paraná, PR, Brazil
| | - Magdalena V Monferrán
- ICYTAC: Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Departmento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Bv. Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | - Daniel A Wunderlin
- ICYTAC: Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Departmento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Bv. Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Marisa Narciso Fernandes
- Department of Physiological Sciences, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil.
| | - Cléo Alcantara Costa Leite
- Department of Physiological Sciences, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil.
| |
Collapse
|
6
|
Ting YC, Zou YX, Pan SY, Ko YR, Ciou ZJ, Huang CH. Sources-attributed contributions to health risks associated with PM 2.5-bound polycyclic aromatic hydrocarbons during the warm and cold seasons in an urban area of Eastern Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171325. [PMID: 38428604 DOI: 10.1016/j.scitotenv.2024.171325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/28/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Despite the well-established recognition of the health hazards posed by PM2.5-bound PAHs, a comprehensive understanding of their source-specific impact has been lacking. In this study, the health risks associated with PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and source-specific contributions were investigated in the urban region of Taipei during both cold and warm seasons. The levels of PM2.5-bound PAHs and their potential health risks across different age groups of humans were also characterized. Diagnostic ratios and positive matrix factorization analysis were utilized to identify the sources of PM2.5-bound PAHs. Moreover, potential source contribution function (PSCF), concentration-weighted trajectory (CWT) and source regional apportionment (SRA) analyses were employed to determine the potential source regions. Results showed that the total PAHs (TPAHs) concentrations ranged from 0.08 to 2.37 ng m-3, with an average of 0.69 ± 0.53 ng m-3. Vehicular emissions emerged as the primary contributor to PM2.5-bound PAHs, constituting 39.8 % of the TPAHs concentration, followed by industrial emissions (37.6 %), biomass burning (13.8 %), and petroleum/oil volatilization (8.8 %). PSCF and CWT analyses revealed that industrial activities and shipping processes in northeast China, South China Sea, Yellow Sea, and East China Sea, contributed to the occurrence of PM2.5-bound PAHs in Taipei. SRA identified central China as the primary regional contributor of ambient TPAHs in the cold season and Taiwan in the warm season, respectively. Evaluations of incremental lifetime cancer risk demonstrated the highest risk for adults, followed by children, seniors, and adolescents. The assessments of lifetime lung cancer risk showed that vehicular and industrial emissions were the main contributors to cancer risk induced by PM2.5-bound PAHs. This research emphasizes the essential role of precisely identifying the origins of PM2.5-bound PAHs to enhance our comprehension of the related human health hazards, thus providing valuable insights into the mitigation strategies.
Collapse
Affiliation(s)
- Yu-Chieh Ting
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan.
| | - Yu-Xuan Zou
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Shih-Yu Pan
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ru Ko
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Zih-Jhe Ciou
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Chuan-Hsiu Huang
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
7
|
Fortes WMPA, Souza IDC, Azevedo VC, Griboff J, Monferrán MV, Wunderlin DA, Matsumoto ST, Fernandes MN. Metal/metalloid bioconcentration dynamics in fish and the risk to human health due to water contamination with atmospheric particulate matter from a metallurgical industrial area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166119. [PMID: 37567312 DOI: 10.1016/j.scitotenv.2023.166119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Settleable atmospheric particulate matter (SeAPM) containing a mixture of metals, including metallic nanoparticles, has increased throughout the world, and caused environmental and biota contamination. The metal bioconcentration pattern in Nile tilapia (Oreochromis niloticus) was evaluated during a 30-day exposure to 1 g L-1 SeAPM and assessed the human health risk from consuming fish fillets (muscle) based on the estimated daily intake (EDI). SeAPM was collected surrounding an iron ore processing and steel industrial complex in Vitória city (Espírito Santo, Brazil) area. Water samples were collected daily for physicochemical analyses, and every 3 days for multi-elemental analyses. Metal bioconcentrations were determined in the viscera and fillet of fish every 3 days. The elements B, Al, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Rb, Sr, Ag, Cd, Pb, Hg, Ba, Bi, W, Ti, Zr, Y, La, Nb, and Ce were analyzed in SeAPM, water, and fish using inductively coupled plasma mass spectrometry. The metal concentration in SeAPM-contaminated water was higher than in control water. Most metals bioconcentrated preferentially in the fish viscera, except for the Hg and Rb, which bioconcentrated mostly in the fillet. The bioconcentration pattern was Fe > Al > Mn > Pb > V > La > Ce > Y > Ni > Se > As > W > Bi in the viscera; it was higher than the controls throughout the 30-day exposure. Ti, Zr, Nb, Rb, Cd, Hg, B, and Cr showed different bioconcentration patterns. The Zn, Cu, Sr, Sn, Ag, and Ta did not differ from controls. The differences in metal bioconcentration were attributed to diverse metal bioavailability in water and the dissimilar ways fish can cope with each metal, including inefficient excretion mechanisms. The EDI calculation indicated that the consumption of the studied fish is not safe for children, because the concentrations of As, La, Zr, and Hg exceed the World Health Organization's acceptable daily intake for these elements.
Collapse
Affiliation(s)
- William Manuel Pereira Antunes Fortes
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Rod Washington Luiz, km 235, 13565-905 São Carlos, São Paulo, Brazil
| | - Iara da Costa Souza
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Rod Washington Luiz, km 235, 13565-905 São Carlos, São Paulo, Brazil.
| | | | - Julieta Griboff
- Departamento Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende esq. Haya de la Torre s/n, 5000 Córdoba, Argentina
| | - Magdalena Victoria Monferrán
- Departamento Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende esq. Haya de la Torre s/n, 5000 Córdoba, Argentina
| | - Daniel Alberto Wunderlin
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC), CONICET and Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Silvia Tamie Matsumoto
- Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (DCB/UFES), Ave. Fernando Ferrari, 514, 29075-910 Vitória, Espírito Santo, Brazil
| | - Marisa Narciso Fernandes
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Rod Washington Luiz, km 235, 13565-905 São Carlos, São Paulo, Brazil.
| |
Collapse
|
8
|
Monteiro R, Souza IDC, Morozesk M, Soares MP, De Angelis CF, Vieira NS, Bendhack F, Monferrán MV, Wunderlin DA, Fernandes MN. Metalliferous atmospheric settleable particulate matter action on the fat snook fish (Centropomus parallelus): Metal bioaccumulation, antioxidant responses and histological changes in gills, hepatopancreas and kidneys. CHEMOSPHERE 2023; 330:138715. [PMID: 37098361 DOI: 10.1016/j.chemosphere.2023.138715] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/15/2023] [Indexed: 05/14/2023]
Abstract
Metallic smoke released by steel industries is constitute by a mixture of fine and gross particles containing metals, including the emerging ones, which sedimentation contaminates soil and aquatic ecosystems and put in risk the resident biota. This study determined the metal/metalloids in the atmospheric settleable particulate matter (SePM, particles >10 μm) from a metallurgical industrial area and evaluated metal bioconcentration, antioxidant responses, oxidative stress, and the histopathology in the gills, hepatopancreas and kidneys of fat snook fish (Centropomus parallelus) exposed to different concentrations of SePM (0.0, 0.01, 0.1 and 1.0 g L-1), for 96 h. From the 27 metals (Al, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Ag, Cd, Sn, Ba, La, Ce, W, Hg, Pb, Bi) analyzed, 18 were quantified in SePM and dissolved in seawater. Metal bioconcentrations differed among organs; Fe and Zn were the metals most bioconcentrated in all organs, Fe was higher in hepatopancreas and Zn > Fe > Sr > Al was higher in kidneys. The activity of superoxide dismutase (SOD) decreased in the gills; SOD, catalase (CAT) decreased, and glutathione peroxidase (GPx) increased in hepatopancreas and, CAT, glutathione-S-transferase (GST) and the level of glutathione (GSH) increased in kidneys. The unchanged levels of lipid peroxidation and oxidized protein in any organ indicate that the antioxidant responses were efficient to avoid oxidative stress. Organ lesion indices were higher in the gills > kidneys > hepatopancreas, being higher in fish exposed to 0.01 g L-1 SePM. All changes indicate a tissue-specific metal/metalloids bioconcentration, antioxidant and morphological responses that all together compromise fish health. Regulatory normative are needed to control the emission of these metalliferous PM to preserve the environment and biota.
Collapse
Affiliation(s)
- Rafaella Monteiro
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, Rod. Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil
| | - Iara da Costa Souza
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, Rod. Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil.
| | - Mariana Morozesk
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, Rod. Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil
| | - Michelly Pereira Soares
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, Rod. Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil
| | - Carolina Fernandes De Angelis
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, Rod. Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil
| | - Nathan S Vieira
- Centro de Estudos Marinhos, Universidade Federal do Paraná, Rua Rio Grande do Norte, 145, Miramar, Pontal do Paraná, PR, Brazil
| | - Fabiano Bendhack
- Centro de Estudos Marinhos, Universidade Federal do Paraná, Rua Rio Grande do Norte, 145, Miramar, Pontal do Paraná, PR, Brazil
| | - Magdalena Victoria Monferrán
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC), CONICET and Depto. Quimica. Orgánica, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Daniel Alberto Wunderlin
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC), CONICET and Depto. Quimica. Orgánica, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Marisa Narciso Fernandes
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, Rod. Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|