1
|
Chen Y, Wu Z, Li M, Wu Y. The relationship between urinary glyphosate and all-cause and specific-cause mortality: a prospective study. Sci Rep 2025; 15:10759. [PMID: 40155766 PMCID: PMC11953284 DOI: 10.1038/s41598-025-95139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/19/2025] [Indexed: 04/01/2025] Open
Abstract
Glyphosate (GLY) is a well-known herbicide with significant applications in both agriculture and non-agriculture. However, GLY overuse in recent years has resulted in detection of GLY residues in many crops, endangering human health and food safety. Our aim is to investigate the relationship between urinary GLY and mortality, as well as its influencing factors. The National Health and Nutrition Examination Survey (NHANES) data from 4740 American adults were examined. Fitted smooth curves, generalized summation models, and multiple logistic regression models were used to investigate the relationship between urinary GLY and mortality. To investigate potential regulatory elements between the two effects, perform subgroup analysis. During a median follow-up of 4.03 years, there were a total of 238 all-cause deaths, 75 cardiovascular disease (CVD) deaths and 52 cancer deaths. The urinary GLY is positively correlated with all-cause mortality. Each 1 ng/ml increase in urinary GLY was associated with a 40% increased risk of all-cause mortality (Hazard ratio (HR) 1.40, 95% confidence interval (CI) 1.09-1.80), and an 50% increased risk of all-cause mortality in High group compared with Low group (HR 1.50, 95% CI 1.05-2.14). In subgroup analysis, the association between urinary GLY and all-cause mortality was significantly modified by gender (P for interaction = 0.03), and the association between urinary GLY and cancer mortality was significantly modified by hypertension (P for interaction = 0.022). Higher urinary GLY seems to be associated with more all-cause death, and gender may affect this association. Furthermore, urine GLY may have a higher effect on cancer mortality in people without hypertension.
Collapse
Affiliation(s)
- Yi Chen
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Zhijian Wu
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Meng Li
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
2
|
Olszyk D, Pfleeger T, Nash M, Plocher M. Effects of Simulated Glyphosate Drift to Native Prairie Plants and Canola-Compatible Brassicaceae Species of North Dakota, United States. CROP PROTECTION (GUILDFORD, SURREY) 2024; 182:106692. [PMID: 39439886 PMCID: PMC11492983 DOI: 10.1016/j.cropro.2024.106692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
This study evaluated effects to native plant and weedy Brassicaceae species growing in areas potentially affected by drift of glyphosate used with glyphosate-resistant canola (Brassica napus). Ten native grass and forb species were selected based on importance in prairie areas of North Dakota, US; and four introduced Brassicaceae species (Brassica juncea, Brassica nigra, Brassica rapa, and Sinapis arvensis ssp. arvensis) were selected based on their ability to cross with B. napus. Greenhouse-grown seedlings were treated with 0 (carrier control), 0.00056, 0.0032, 0.018 and 0.1 × a field application rate (FAR) of 829 g ha-1 acid glyphosate (g acid equivalent or a.e. ha-1), along with no spray plants; with each treatment repeated in two experiments. Shoot dry weight and height were measured 14 days after treatment, and data were subjected to analysis of variance or covariance followed by a Dunnett's multiple comparison test to obtain No-Observed-Adverse-Effect-Rates (NOAERs) for both parameters. A Weibull regression was used to obtain the rate producing a 25% reduction (ER25) for shoot dry weight or height for a limited number of species and experiment combinations. Based on NOAER values for both shoot dry weight and height, most native species had reductions in growth with 0.1 x FAR resulting in NOAERs of 0.018 × FAR for at least one experiment. Nassella viridula was the most sensitive native species, with a NOAER of 0.0032 x FAR for shoot dry weight and one experiment for height. The Brassicaceae species responded similarly to glyphosate as the native species, with NOAER values ranging from 0.0032 to 0.018 × FAR. Only four species had valid regression analyses for shoot dry weight or height resulting in ER25 values between 0.007 and 0.054 x FAR. Pascopyrum smithii and Schizachyrium scoparium were not affected by glyphosate as indicated by NOAER values. This study indicated that drift concentrations between approximately 0.003, but more commonly ≥ 0.1 × FAR (2.49 and 82.9 g ha-1 acid glyphosate, respectively) may affect the growth and potential competitiveness of selected native plant species, and Brassicaceae species sexually compatible with glyphosate-resistant B. napus in North Dakota.
Collapse
Affiliation(s)
- David Olszyk
- US Environmental Protection Agency, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, 200 SW 35 St., Corvallis, OR, USA. 97333
| | - Thomas Pfleeger
- US Environmental Protection Agency, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, 200 SW 35 St., Corvallis, OR, USA. 97333
| | - Maliha Nash
- US Environmental Protection Agency, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, 2111 SE Marine Science, Dr., Newport, OR, USA. 97365
| | | |
Collapse
|
3
|
Pinedo-Hernández J, Marrugo-Negrete J, Pérez-Espitia M, Durango-Hernández J, Enamorado-Montes G, Navarro-Frómeta A. A pilot-scale electrocoagulation-treatment wetland system for the treatment of landfill leachate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119681. [PMID: 38043314 DOI: 10.1016/j.jenvman.2023.119681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023]
Abstract
In the present study, the technical feasibility of an electrocoagulation-treatment wetland continuous flow system, for the removal of organic matter from landfill leachate (LL), was evaluated. The response surface methodology (MSR) was used to assess the individual and combined effects of the applied potential and distance between electrodes, on the removal efficiency and optimization of the electrocoagulation process. The hybrid treatment wetland system consisted of a vertical flow system coupled to a horizontal subsurface flow system, both planted with Canna indica. For a chemical oxygen demand (COD) concentration - without pretreatment of 5142.8 ± 2.5 mg L-1, the removal percentage for the electrocoagulation system was 79.4 ± 0.16%, under the optimal working conditions (Potential: 20 V; Distance: 2.0 cm). The COD removal efficiency in the treatment wetland with Canna indica showed a dependence with the hydraulic retention time, reaching 59.2 ± 0.2 % over 15 days. The overall efficiency of the system was about 91.5 ± 0.02 % removal of COD. In addition, a decrease in the biochemical oxygen demand (94.8 ± 0.14%) and total suspended solids (88.2 ± 0.22%), also related to the contamination levels of the LL, were obtained. This study, for the first time, shows that the coupling of electrocoagulation together with a treatment wetland system is a good alternative for the removal of organic contaminants present in LL.
Collapse
Affiliation(s)
- José Pinedo-Hernández
- University of Córdoba, Faculty of Basic Sciences, Department of Chemistry, Water, Applied and Environmental Chemistry Group, Laboratory of Toxicology and Environmental Management, Montería, Colombia.
| | - José Marrugo-Negrete
- University of Córdoba, Faculty of Basic Sciences, Department of Chemistry, Water, Applied and Environmental Chemistry Group, Laboratory of Toxicology and Environmental Management, Montería, Colombia
| | - Mauricio Pérez-Espitia
- University of Córdoba, Faculty of Basic Sciences, Department of Chemistry, Water, Applied and Environmental Chemistry Group, Laboratory of Toxicology and Environmental Management, Montería, Colombia
| | - José Durango-Hernández
- University of Córdoba, Faculty of Basic Sciences, Department of Chemistry, Water, Applied and Environmental Chemistry Group, Laboratory of Toxicology and Environmental Management, Montería, Colombia
| | - Germán Enamorado-Montes
- University of Córdoba, Faculty of Basic Sciences, Department of Chemistry, Water, Applied and Environmental Chemistry Group, Laboratory of Toxicology and Environmental Management, Montería, Colombia
| | - Amado Navarro-Frómeta
- Technological University of Izúcar de Matamoros, Prolongación Reforma # 168, Barrio Santiago Mihuacán, Izúcar de Matamoros, 74420, Puebla, Mexico.
| |
Collapse
|