1
|
James K, Macreadie PI, Burdett HL, Davies I, Kamenos NA. It's time to broaden what we consider a 'blue carbon ecosystem'. GLOBAL CHANGE BIOLOGY 2024; 30:e17261. [PMID: 38712641 DOI: 10.1111/gcb.17261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/10/2024] [Accepted: 02/18/2024] [Indexed: 05/08/2024]
Abstract
Photoautotrophic marine ecosystems can lock up organic carbon in their biomass and the associated organic sediments they trap over millennia and are thus regarded as blue carbon ecosystems. Because of the ability of marine ecosystems to lock up organic carbon for millennia, blue carbon is receiving much attention within the United Nations' 2030 Agenda for Sustainable Development as a nature-based solution (NBS) to climate change, but classically still focuses on seagrass meadows, mangrove forests, and tidal marshes. However, other coastal ecosystems could also be important for blue carbon storage, but remain largely neglected in both carbon cycling budgets and NBS strategic planning. Using a meta-analysis of 253 research publications, we identify other coastal ecosystems-including mud flats, fjords, coralline algal (rhodolith) beds, and some components or coral reef systems-with a strong capacity to act as blue carbon sinks in certain situations. Features that promote blue carbon burial within these 'non-classical' blue carbon ecosystems included: (1) balancing of carbon release by calcification via carbon uptake at the individual and ecosystem levels; (2) high rates of allochthonous organic carbon supply because of high particle trapping capacity; (3) high rates of carbon preservation and low remineralization rates; and (4) location in depositional environments. Some of these features are context-dependent, meaning that these ecosystems were blue carbon sinks in some locations, but not others. Therefore, we provide a universal framework that can evaluate the likelihood of a given ecosystem to behave as a blue carbon sink for a given context. Overall, this paper seeks to encourage consideration of non-classical blue carbon ecosystems within NBS strategies, allowing more complete blue carbon accounting.
Collapse
Affiliation(s)
| | - Peter I Macreadie
- Marine Research and Innovation Centre, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Heidi L Burdett
- Umeå Marine Sciences Centre, Umeå University, Norrbyn, Sweden
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | | | - Nicholas A Kamenos
- Umeå Marine Sciences Centre, Umeå University, Norrbyn, Sweden
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| |
Collapse
|
2
|
Attard K, Singh RK, Gattuso JP, Filbee-Dexter K, Krause-Jensen D, Kühl M, Sejr MK, Archambault P, Babin M, Bélanger S, Berg P, Glud RN, Hancke K, Jänicke S, Qin J, Rysgaard S, Sørensen EB, Tachon F, Wenzhöfer F, Ardyna M. Seafloor primary production in a changing Arctic Ocean. Proc Natl Acad Sci U S A 2024; 121:e2303366121. [PMID: 38437536 PMCID: PMC10945780 DOI: 10.1073/pnas.2303366121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Phytoplankton and sea ice algae are traditionally considered to be the main primary producers in the Arctic Ocean. In this Perspective, we explore the importance of benthic primary producers (BPPs) encompassing microalgae, macroalgae, and seagrasses, which represent a poorly quantified source of Arctic marine primary production. Despite scarce observations, models predict that BPPs are widespread, colonizing ~3 million km2 of the extensive Arctic coastal and shelf seas. Using a synthesis of published data and a novel model, we estimate that BPPs currently contribute ~77 Tg C y-1 of primary production to the Arctic, equivalent to ~20 to 35% of annual phytoplankton production. Macroalgae contribute ~43 Tg C y-1, seagrasses contribute ~23 Tg C y-1, and microalgae-dominated shelf habitats contribute ~11 to 16 Tg C y-1. Since 2003, the Arctic seafloor area exposed to sunlight has increased by ~47,000 km2 y-1, expanding the realm of BPPs in a warming Arctic. Increased macrophyte abundance and productivity is expected along Arctic coastlines with continued ocean warming and sea ice loss. However, microalgal benthic primary production has increased in only a few shelf regions despite substantial sea ice loss over the past 20 y, as higher solar irradiance in the ice-free ocean is counterbalanced by reduced water transparency. This suggests complex impacts of climate change on Arctic light availability and marine primary production. Despite significant knowledge gaps on Arctic BPPs, their widespread presence and obvious contribution to coastal and shelf ecosystem production call for further investigation and for their inclusion in Arctic ecosystem models and carbon budgets.
Collapse
Affiliation(s)
- Karl Attard
- Department of Biology, University of Southern Denmark, 5230Odense M, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, 5230Odense M, Denmark
- Takuvik International Research Laboratory, CNRS/Université Laval, Québec City, QCG1V 0A6, Canada
| | - Rakesh Kumar Singh
- Department of Biology, Chemistry and Geography, Université du Québec à Rimouski, Rimouski, QCG5L 3A1, Canada
- Center for Remote Imaging, Sensing and Processing, National University of Singapore, Singapore119076, Singapore
| | - Jean-Pierre Gattuso
- CNRS-Sorbonne Université, Laboratoire d’Océanographie, Villefranche-sur-Mer06230, France
- Institute for Sustainable Development and International Relations, Paris75337, France
| | - Karen Filbee-Dexter
- Takuvik International Research Laboratory, CNRS/Université Laval, Québec City, QCG1V 0A6, Canada
- Benthic Communities Group/Institute of Marine Research, His4817, Norway
- School of Biological Science and Indian Oceans Marine Research Centre, University of Western Australia, Perth6009, WA, Australia
| | - Dorte Krause-Jensen
- Department of Ecoscience, Aarhus University, 8000Aarhus C, Denmark
- Arctic Research Center, Department of Biology, Aarhus University, 8000Aarhus C, Denmark
| | - Michael Kühl
- Department of Biology, Marine Biological Section, University of Copenhagen, 3000Helsingør, Denmark
| | - Mikael K. Sejr
- Department of Ecoscience, Aarhus University, 8000Aarhus C, Denmark
- Arctic Research Center, Department of Biology, Aarhus University, 8000Aarhus C, Denmark
| | - Philippe Archambault
- Takuvik International Research Laboratory, CNRS/Université Laval, Québec City, QCG1V 0A6, Canada
- ArcticNet, Department of Biology, Université Laval, Québec City, QCG1V 0A6, Canada
| | - Marcel Babin
- Takuvik International Research Laboratory, CNRS/Université Laval, Québec City, QCG1V 0A6, Canada
| | - Simon Bélanger
- Department of Biology, Chemistry and Geography, Université du Québec à Rimouski, Rimouski, QCG5L 3A1, Canada
| | - Peter Berg
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA400123
| | - Ronnie N. Glud
- Department of Biology, University of Southern Denmark, 5230Odense M, Denmark
- Danish Institute for Advanced Study, University of Southern Denmark, 5230Odense M, Denmark
- Department of Ocean and Environmental Sciences, Tokyo University of Marine Science and Technology, 108-8477Tokyo, Japan
| | - Kasper Hancke
- Norwegian Institute for Water Research, 0579Oslo, Norway
| | - Stefan Jänicke
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Jing Qin
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Søren Rysgaard
- Arctic Research Center, Department of Biology, Aarhus University, 8000Aarhus C, Denmark
- Centre for Earth Observation Science, Clayton H. Riddell Faculty of Environment Earth, and Resources, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Esben B. Sørensen
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Foucaut Tachon
- Takuvik International Research Laboratory, CNRS/Université Laval, Québec City, QCG1V 0A6, Canada
| | - Frank Wenzhöfer
- Department of Biology, University of Southern Denmark, 5230Odense M, Denmark
- Helmholtz - Max Planck Joint Research Group for Deep Sea Ecology and Technology, Alfred-Wegener-Institute Helmholtz-Centre for Polar and Marine Research, Bremerhaven27515, Germany
- Helmholtz - Max Planck Joint Research Group for Deep Sea Ecology and Technology, Max-Planck-Institute for Marine Microbiology, Bremen28359, Germany
| | - Mathieu Ardyna
- Takuvik International Research Laboratory, CNRS/Université Laval, Québec City, QCG1V 0A6, Canada
| |
Collapse
|
3
|
Carlson DF, Akbulut S, Rasmussen JF, Hestbech CS, Andersen MH, Melvad C. Compact and modular autonomous surface vehicle for water research: The Naval Operating Research Drone Assessing Climate Change (NORDACC). HARDWAREX 2023; 15:e00453. [PMID: 37529684 PMCID: PMC10387611 DOI: 10.1016/j.ohx.2023.e00453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Research, monitoring, and management of marine and aquatic ecosystems often require surface water samples to measure biogeochemical and optical parameters. Traditional sampling with a boat and several personnel onboard can be labor-intensive and safety requirements limit sampling activities in high-risk environments. This paper describes the Naval Operating Research Drone Assessing Climate Change (NORDACC). NORDACC is an open source, light-weight, and portable autonomous surface vehicle that can acquire surface water samples while also measuring sea surface temperature and salinity for the duration of its deployment. NORDACC is ideal for operations in remote areas where resources and personnel are limited. Two sample bottles, each one liter in volume, can be filled, either at pre-programmed sampling stations or manually, using the remote control. A trimaran design provides buoyancy and stability, with hulls constructed of vacuum-formed acrylonitrile butadiene styrene (ABS) plastic. NORDACC can navigate autonomously between waypoints and features first person view capabilities for enhanced situational awareness. NORDACC's performance was validated in Aarhus Bay, Denmark, collecting multiple surface water samples in winds in excess of 8 ms-1 and steep, choppy waves.
Collapse
Affiliation(s)
- Daniel F. Carlson
- Optical Oceanography, Institute of Carbon Cycles, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| | - Serkan Akbulut
- Department of Mechanical and Production Engineering, Aarhus University, Kathrinebjergvej 89, DK-8200 Aarhus N, Denmark
| | - Jeppe Fogh Rasmussen
- Department of Mechanical and Production Engineering, Aarhus University, Kathrinebjergvej 89, DK-8200 Aarhus N, Denmark
| | - Christian Søndergård Hestbech
- Department of Mechanical and Production Engineering, Aarhus University, Kathrinebjergvej 89, DK-8200 Aarhus N, Denmark
| | - Marius Hjorth Andersen
- Department of Mechanical and Production Engineering, Aarhus University, Kathrinebjergvej 89, DK-8200 Aarhus N, Denmark
| | - Claus Melvad
- Department of Mechanical and Production Engineering, Aarhus University, Kathrinebjergvej 89, DK-8200 Aarhus N, Denmark
- Arctic Research Centre, Department of Biology, Aarhus University, Ole Worms Allé 1, DK-8000 Aarhus C, Denmark
| |
Collapse
|