1
|
He S, Guo X, Zhao M, Chen D, Fu S, Tian G, Xu H, Liang X, Wang H, Li G, Liu X. Ecological restoration reduces greenhouse gas emissions by altering planktonic and sedimentary microbial communities in a shallow eutrophic lake. ENVIRONMENTAL RESEARCH 2025; 275:121400. [PMID: 40090476 DOI: 10.1016/j.envres.2025.121400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/18/2025]
Abstract
Ecological restoration is a promising approach to alleviate eutrophication. However, its impacts on greenhouse gas (GHG) emissions and the underlying microbial mechanisms in different habitats of lakes remain unclear. To address this knowledge gap, we measured carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes at both water-air and sediment-water interfaces of eutrophic (Caohai) and restored area (Dapokou) of Dianchi Lake, a typical eutrophic lake in China. Meanwhile, we investigated the responses of planktonic and sedimentary bacterial and fungal communities by high-throughput sequencing. Our results indicated that 6 years of ecological restoration significantly reduced CO2 and N2O fluxes by 1.0-3.6 and 2.2-2.8 folds respectively, with more pronounced variations at the water-air interface than the sediment-water interface. Ecological restoration also shifted the structures of planktonic bacterial and fungal communities remarkably, leading to a significant reduction in the relative abundances of Actinobacteriota (by 70.94%), Bacteroidota (by 61.65%), Planctomycetota (by 74.18%) and Chytridiomycota (by 95.44%). Correlation analyses further suggested that GHG fluxes at the water-air interface were significantly correlated with planktonic microbial community composition (P < 0.05), and the significant reduction of CO2 and N2O fluxes under ecological restoration could be attributed to the decreased abundances of organic matter decomposers (such as hgcI_clade, Sporichthyaceae and Acidibacter) and increased abundances of autotrophs (such as Hydrogenophaga and Cyanobium_PCC-6307) in water. Collectively, our findings verify the importance of ecological restoration in reducing GHG emissions in inland lake ecosystems, providing new insights for addressing global climate change and advancing carbon neutrality.
Collapse
Affiliation(s)
- Songbing He
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xue Guo
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Mengying Zhao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Dengbo Chen
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shuai Fu
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Gege Tian
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Huihua Xu
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ximing Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hongtao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Guanghe Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
2
|
Hu J, Li H, Wu X, Su R, Zhao J, Lin S, Wang Y, Jiang Y, Wu Y, Kang J, Hu R. Iron forms regulate methane production and oxidation potentials in paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177728. [PMID: 39616909 DOI: 10.1016/j.scitotenv.2024.177728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/19/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024]
Abstract
Paddy fields serve as significant sources of methane (CH4) emissions. The periodic flooding and draining in paddy soils induce alternating redox processes, leading to iron transformations and further influencing the production and oxidation of CH4. However, the relationships between CH4 production/oxidation and the concentrations/forms of iron oxides in rice paddies across different regions are largely unknown. Here we collected 26 paddy soil samples from various regions spanning from North to South China. We show that the CH4 production potential varies from 0.005 to 0.618 mg kg-1 d-1, which exhibits an overall trend of higher values in the south and lower values in the north. Moreover, the CH4 oxidation potential spans from 0.888 to 57.384 mg kg-1 d-1, showing no significant latitudinal trend. Highly weathered soils exhibit higher CH4 production potentials, mainly due to the high content of free iron oxides and the low reactivity of aged iron minerals. This hinders the protection of organic carbon (OC) by iron minerals, therefore increasing substrate availability for methanogenesis. In addition to the direct effect, iron forms also indirectly influence CH4 production and oxidation potentials by affecting soil pH, OC availability, and CH4-related microbial abundances. The coefficients of the indirect effect of iron forms on CH4 production and oxidation potential are 0.44 and 0.26, respectively, which are larger than that of the direct effects. Our research reveals the pivotal role of various iron forms in controlling CH4 production and oxidation processes in paddy soils, helping to expand the understanding of the effect of iron biogeochemistry on CH4 emissions in paddy soils and offering new perspectives for mitigating agricultural greenhouse gas emissions.
Collapse
Affiliation(s)
- Jinli Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Huabin Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xian Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ronglin Su
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinsong Zhao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Shan Lin
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanbin Jiang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yupeng Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Kang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China.
| | - Ronggui Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Mu J, Li Z, Lu Q, Yu H, Hu C, Mu Y, Qu J. Overlooked drivers of the greenhouse effect: The nutrient-methane nexus mediated by submerged macrophytes. WATER RESEARCH 2024; 266:122316. [PMID: 39222603 DOI: 10.1016/j.watres.2024.122316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Submerged macrophytes remediation is a commonly used technique for improving water quality and restoring habitat in aquatic ecosystems. However, the drivers of success in the submerged macrophytes assembly process and their specific impacts on methane emissions are poorly understood. Thus, we conducted a mesocosm experiment to test the growth plasticity and carbon fixation of widespread submerged macrophytes (Vallisneria natans) under different nutrient conditions. A refined dynamic chamber method was utilized to concurrently collect and quantify methane emission fluxes arising from ebullition and diffusion processes. Significant correlations were found between methane flux and variations in the physiological activities of V. nantas by the fluorescence imaging system. Our results show that exceeding tolerance thresholds of ammonia in the water significantly interfered with the photosynthetic systems in submerged leaves and the radial oxygen loss in adventitious roots. The recovery process of V. natans accelerated the consumption of dissolved oxygen, leading to increase in the populations of methanogen (153.3 % increase of mcrA genes) and subsequently elevating CH4 emission fluxes (23.7 %) under high nutrient concentrations. Conversely, V. natans increased the available organic carbon under low nutrient conditions by radial oxygen loss, further increasing CH4 emission fluxes (94.7 %). Quantitative genetic and modeling analyses revealed that plant restoration processes drive ecological niche differentiation of methanogenic and methane oxidation microorganisms, affecting methane release fluxes within the restored area. The speciation process of V. natans is incapable of simultaneously meeting improved water purification and reduced methane emissions goals.
Collapse
Affiliation(s)
- Jichun Mu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenhan Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Quanlin Lu
- University of Chinese Academy of Sciences, Beijing, 100049, China; National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Hongwei Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujing Mu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Zhang M, Huang W, Zhang L, Feng Z, Zuo Y, Xie Z, Xing W. Nitrite-dependent anaerobic methane oxidation (N-DAMO) in global aquatic environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171081. [PMID: 38387583 DOI: 10.1016/j.scitotenv.2024.171081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
The vast majority of processes in the carbon and nitrogen cycles are driven by microorganisms. The nitrite-dependent anaerobic oxidation of methane (N-DAMO) process links carbon and nitrogen cycles, offering a novel approach for the simultaneous reduction of methane emissions and nitrite pollution. However, there is currently no comprehensive summary of the current status of the N-DAMO process in natural aquatic environments. Therefore, our study aims to fill this knowledge gap by conducting a comprehensive review of the global research trends in N-DAMO processes in various aquatic environments (excluding artificial bioreactors). Our review mainly focused on molecular identification, global study sites, and their interactions with other elemental cycling processes. Furthermore, we performed a data integration analysis to unveil the effects of key environmental factors on the abundance of N-DAMO bacteria and the rate of N-DAMO process. By combining the findings from the literature review and data integration analysis, we proposed future research perspectives on N-DAMO processes in global aquatic environments. Our overarching goal is to advance the understanding of the N-DAMO process and its role in synergistically reducing carbon emissions and removing nitrogen. By doing so, we aim to make a significant contribution to the timely achievement of China's carbon peak and carbon neutrality targets.
Collapse
Affiliation(s)
- Miao Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garde, Chinese Academy of Sciences, Wuhan 430074, China
| | - Wenmin Huang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garde, Chinese Academy of Sciences, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan 430074, China
| | - Lei Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garde, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zixuan Feng
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garde, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yanxia Zuo
- Analysis and Testing Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zuoming Xie
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| | - Wei Xing
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garde, Chinese Academy of Sciences, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan 430074, China.
| |
Collapse
|
5
|
Mukherjee P, Sharma RS, Rawat D, Sharma U, Karmakar S, Yadav A, Mishra V. Microbial communities drive flux of acid orange 7 and crystal violet dyes in water-sediment system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119699. [PMID: 38070426 DOI: 10.1016/j.jenvman.2023.119699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 01/14/2024]
Abstract
Unchecked dye effluent discharge poses escalating environmental and economic concerns, especially in developing nations. While dyes are well-recognized water pollutants, the mechanisms of their environmental spread are least understood. Therefore, the present study examines the partitioning of Acid Orange 7 (AO7) and Crystal Violet (CV) dyes using water-sediment microcosms and reports that native microbes significantly affect AO7 decolorization and transfer. Both dyes transition from infused to pristine matrices, reaching equilibrium in a fortnight. While microbes influence CV partitioning, their role in decolorization is minimal, emphasizing their varied impact on the environmental fate of dyes. Metagenomic analyses reveal contrasting microbial composition between control and AO7-infused samples. Control water samples displayed a dominance of Proteobacteria (62%), Firmicutes (24%), and Bacteroidetes (9%). However, AO7 exposure led to Proteobacteria reducing to 57% and Bacteroidetes to 3%, with Firmicutes increasing to 34%. Sediment samples, primarily comprising Firmicutes (47%) and Proteobacteria (39%), shifted post-AO7 exposure: Proteobacteria increased to 53%, and Firmicutes dropped to 38%. At the genus level, water samples dominated by Niveispirillum (34%) declined after AO7 exposure, while Bacillus and Pseudomonas increased. Notably, Serratia and Sphingomonas, known for azo dye degradation, rose post-exposure, hinting at their role in AO7 decolorization. Conversely, sediment samples showed a decrease in the growth of Bacillus and an increase in that of Pseudomonas and Serratia. These findings emphasize the significant role of microbial communities in determining the environmental fate of dyes, providing insights on its environmental implications and management.
Collapse
Affiliation(s)
- Paromita Mukherjee
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110 007, India
| | - Radhey Shyam Sharma
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110 007, India; Delhi School of Climate Change & Sustainability, Institute of Eminence, University of Delhi, Delhi, 110007, India.
| | - Deepak Rawat
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110 007, India; Department of Environmental Studies, Janki Devi Memorial College (University of Delhi), New Delhi, 110060, India
| | - Udita Sharma
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110 007, India
| | - Swagata Karmakar
- Department of Environmental Studies, Ram Lal Anand College, Benito Juarez Marg, South Campus, New Delhi-110021, India
| | - Archana Yadav
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110 007, India
| | - Vandana Mishra
- Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, University of Delhi, Delhi, 110 007, India; Centre for Interdisciplinary Studies on Mountain & Hill Environment (CISMHE), University of Delhi, Delhi, 110007, India; Biodiversity Parks, University of Delhi- Delhi Development Authority Programme, Delhi, 110007, India.
| |
Collapse
|
6
|
Wang T, Zhumabieke M, Zhang N, Liu C, Zhong J, Liao Q, Zhang L. Variable promotion of algae and macrophyte organic matter on methanogenesis in anaerobic lake sediment. ENVIRONMENTAL RESEARCH 2023; 237:116922. [PMID: 37598844 DOI: 10.1016/j.envres.2023.116922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/29/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Shallow lakes are an important natural source of atmospheric methane (CH4), and the input of autochthonous organic matter (OM) into their sediments encourages methanogenesis. Although algal- and macrophytic-originated OM in these lakes are expected to have different impacts on methanogenesis and methanogenic archaeal communities in lake sediments owing to their various properties, their specific influence and role in sediment remain unclear. In this study, a 148-day incubation was carried out by adding algal- and macrophytic-OM to the sediments of shallow eutrophic Lake Chaohu and Lake Taihu in China. CH4 was periodically monitored, while the methanogens were examined via qPCR and high-throughput sequencing at the end of incubation. Algal-OM stimulated CH4 production more than macrophytic-OM in both sediments, with the rates initially increasing and then decreasing before reaching a relative constant. Macrophytic-OM promoted CH4 production to a comparable extent in both lakes, while algal-OM promoted greater CH4 in Lake Chaohu than in Lake Taihu. However, algal-OM did not significantly increase mcrA gene copies, while macrophytic-OM did by 17.0-20.1-fold. Algal-OM potentially promoted the methylotrophic pathway in Lake Taihu but did not change the methanogenic structure in Lake Chaohu. Comparatively, macrophytic-OM promoted CH4 production mainly by acetoclastic methanogen proliferation in both lakes. More CH4 release with algal-OM compared to macrophytic-OM deserves further attention owing to the prevailing increasing algal blooms and the declining macrophyte population in lakes.
Collapse
Affiliation(s)
- Tong Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Maidina Zhumabieke
- Department of Environmental Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Nan Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China; School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, PR China
| | - Cheng Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Jicheng Zhong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Qianjiahua Liao
- Department of Environmental Science, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Lei Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China.
| |
Collapse
|
7
|
Zhang Y, Sun S, Gu X, Yu Q, He S. Role of hydrophytes in constructed wetlands for nitrogen removal and greenhouse gases reduction. BIORESOURCE TECHNOLOGY 2023; 388:129759. [PMID: 37716572 DOI: 10.1016/j.biortech.2023.129759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023]
Abstract
With the prominence of global climate change and proposal of carbon reduction concept, how to maximize the comprehensive effect of nitrogen removal and greenhouse gases (GHGs) reduction in constructed wetlands (CWs) has become crucial. As indispensable biological component of CWs, hydrophytes have received extensive attention owing to their application potential. This review comprehensively evaluates the functions of hydrophytes in nitrogen removal and GHGs reduction in CWs in terms of plants themselves, plant-mediated microbes and plant residues (hydrophyte carbon sources and hydrophyte-derived biochars). On this basis, the strategies for constructing an ideal CW system are put forward from the perspective of full life-cycle utilization of hydrophytes. Finally, considering the variability of plant species composition in CWs, outlooks for future research are specifically proposed. This review provides guidance and novel perspectives for the full life-cycle utilization of hydrophytes in CWs, as well as for the construction of an ideal CW system.
Collapse
Affiliation(s)
- Yu Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingjiang Yu
- Daqing Water Group Company Limited, Daqing 163000, China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Engineering Research Center of Landscape Water Environment, Shanghai 200031, China.
| |
Collapse
|