1
|
Huang W, Chen J, Yang E, Meng L, Feng Y, Chen Y, Huang Z, Tan R, Xiao Z, Zhou Y, Xu M, Yu K. Heat-tolerant subtropical Porites lutea may be better adapted to future climate change than tropical one in the South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178381. [PMID: 39799646 DOI: 10.1016/j.scitotenv.2025.178381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/28/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
Coral reefs are degrading at an accelerating rate owing to climate change. Understanding the heat stress tolerance of corals is vital for their sustainability. However, this tolerance varies substantially geographically, and information regarding coral responses across latitudes is lacking. In this study, we conducted a high temperature (34 °C) stress experiment on Porites lutea from tropical Xisha Islands (XS) and subtropical Daya Bay (DY) in the South China Sea (SCS). We compared physiological levels, antioxidant activities, and transcriptome sequencing to explore heat tolerance mechanisms and adaptive potential. At 34 °C, both XS and DY corals experienced significant bleaching and the physiological/biochemical index decreased, with XS corals exhibiting greater changes than DY corals. Transcriptome analysis revealed that coral hosts respond to heat stress mainly by boosting metabolic activity. The subtle transcriptional responses of zooxanthellae C15 underscored the host's pivotal role in thermal stress responses. DY coral hosts showed lower bleaching, stronger physiological plasticity, and higher temperature tolerance thresholds than XS, indicating superior heat tolerance. This superiority is linked to negative feedback transcriptional regulation strategies, including active environmental stress response and genetic information damage repair. The differences in thermal adaptability between tropical and subtropical P. lutea in the SCS may be attributed to their genetic differences and native habitat environments, suggesting that subtropical P. lutea may have the potential to adapt to future climate change. This study provides novel insights for predicting the fate of corals at different latitudes in terms of global warming and provides instructive guidance for coral reef ecological restoration.
Collapse
Affiliation(s)
- Wen Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Jinlian Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Enguang Yang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Linqing Meng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yi Feng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yinmin Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Zhihua Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Ronghua Tan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Zunyong Xiao
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yupeng Zhou
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Mingpei Xu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| |
Collapse
|
2
|
Tavakoli-Kolour P, Sinniger F, Morita M, Hazraty-Kari S, Nakamura T, Harii S. Shallow corals acclimate to mesophotic depths while maintaining their heat tolerance against ongoing climate change. MARINE POLLUTION BULLETIN 2024; 209:117277. [PMID: 39561488 DOI: 10.1016/j.marpolbul.2024.117277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
Global warming poses a significant threat to coral reefs. It has been assumed that mesophotic coral ecosystems (MCEs, 30 to 150 m depths) may serve as refugia from ocean warming. This study examined the acclimation capacity and thermal tolerance of two shallow coral species, Porites cylindrica and Turbinaria reniformis, transplanted to mesophotic depths (40 m) for 12 months. Fragments from 5 and 40 m were exposed to control (28 °C), moderate (30 °C), and high (32 °C) temperatures over 14 days. MCE-acclimated fragments showed higher thermal thresholds and survival rates, delayed onset of bleaching, and less decline in photosynthesis efficiency (Fv/Fm) compared to shallow fragments. Both species maintained high thermal tolerance despite prolonged exposure to cooler temperatures of mesophotic depth. These findings suggest that low light intensity in MCEs can act as a modulator of bleaching, supporting the potential of these ecosystems as refugia for shallow corals in a rapidly changing world.
Collapse
Affiliation(s)
- Parviz Tavakoli-Kolour
- Sesoko Marine Research Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.
| | - Frederic Sinniger
- Sesoko Marine Research Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Masaya Morita
- Sesoko Marine Research Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Sanaz Hazraty-Kari
- Sesoko Marine Research Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Takashi Nakamura
- Sesoko Marine Research Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan; Graduate School of Engineering and Science, University of the Ryukyus, Okinawa, Japan
| | - Saki Harii
- Sesoko Marine Research Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.
| |
Collapse
|
3
|
Walker NS, Isma L, García N, True A, Walker T, Watkins J. The Young and the Resilient: Investigating Coral Thermal Resilience in Early Life Stages. Integr Comp Biol 2024; 64:1141-1153. [PMID: 39054304 DOI: 10.1093/icb/icae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Global ocean warming is affecting keystone species distributions and fitness, resulting in the degradation of marine ecosystems. Coral reefs are one of the most diverse and productive marine ecosystems. However, reef-building corals, the foundational taxa of coral reef ecosystems, are severely threatened by thermal stress. Models predict 40-80% of global coral cover will be lost by 2100, which highlights the urgent need for widespread interventions to preserve coral reef functionality. There has been extensive research on coral thermal stress and resilience, but 95% of studies have focused on adult corals. It is necessary to understand stress during early life stages (larvae, recruits, and juveniles), which will better inform selective breeding programs that aim to replenish reefs with resilient stock. In this review, we surveyed the literature on coral thermal resilience in early life stages, and we highlight that studies have been conducted on relatively few species (commonly Acropora spp.) and in limited regions (mainly Australia). Reef-building coral management will be improved by comprehensively understanding coral thermal resilience and fitness across life stages, as well as in diverse species and regions.
Collapse
Affiliation(s)
- Nia S Walker
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Mānoa, HI, USA 96744
| | - Lys Isma
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA 33149
| | - Nepsis García
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA 48109
| | - Aliyah True
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA 33149
| | - Taylor Walker
- Department of BioSciences, Rice University, Houston, TX, USA 77005
- Department of Environmental Science, Policy, & Management, University of California, Berkeley, Berkeley, CA, USA 94720
| | - Joyah Watkins
- Department of BioSciences, Rice University, Houston, TX, USA 77005
| |
Collapse
|
4
|
Longley R, Benucci GMN, Pochon X, Bonito G, Bonito V. Species-specific coral microbiome assemblages support host bleaching resistance during an extreme marine heatwave. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167803. [PMID: 37838063 DOI: 10.1016/j.scitotenv.2023.167803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Scleractinian assemblages are threatened by marine heat waves with coral survivorship depending on host genetics and microbiome composition. We documented an extreme marine heat wave in Fiji and the response of corals in two thermally stressed reef flats. Through high-throughput amplicon sequencing of 16S and ITS rDNA phylogenetic markers, we assessed coral microbiomes (Symbiodiniaceae, prokaryotes, fungi, and Apicomplexa) of paired bleached and unbleached colonies of four common coral species representative of dominant genera in the South Pacific. While all coral species exhibited one or more pathways to bleaching resistance, harboring assemblages composed primarily of thermally tolerant photosymbionts did not always result in host bleaching resistance. Montipora and Pocillopora species, which associate with diverse Symbiodiniaceae and vertically transmit their photosymbionts, fared better than Acropora, which acquire their photosymbionts from the environment, and Porites, which associate with a narrow photosymbiont assemblage. Prokaryotic and fungal beta diversity did not differ between bleached and unbleached conspecifics, however, the relative abundance of the fungus Malassezia globosa was significantly greater in unbleached colonies of Montipora digitata. Each coral species harbored distinct assemblages of Symbiodiniaceae, prokaryotes, and Apicomplexa, but not fungi, reiterating the importance of host genetics in structuring components of its microbiome. Terrestrial fungal and prokaryotic taxa were detected at low abundance across coral microbiomes, indicating that allochthonous microbial inputs occur, but that coral microbiomes remain dominated by marine microbial taxa. Our study offers valuable insights into the microbiome assemblages associated with coral tolerance to extreme water temperatures.
Collapse
Affiliation(s)
- Reid Longley
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, 48824, MI, USA
| | | | - Xavier Pochon
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand; Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Gregory Bonito
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, 48824, MI, USA; Plant, Soil and Microbial Science Department, Michigan State University, East Lansing, 48824, MI, USA; Coral Coast Conservation Center, Votua Village, Fiji.
| | - Victor Bonito
- Coral Coast Conservation Center, Votua Village, Fiji; Reef Explorer Fiji, Votua Village, Fiji
| |
Collapse
|
5
|
Hazraty-Kari S, Morita M, Tavakoli-Kolour P, Harii S. Response of resistant larvae of the coral Acropora tenuis to future thermal stress. MARINE POLLUTION BULLETIN 2023; 192:115060. [PMID: 37207392 DOI: 10.1016/j.marpolbul.2023.115060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023]
Abstract
Seawater temperatures are rising rapidly and severely due to climate change, negatively affecting coral reef communities. The persistence of coral populations depends on their success during the early life stages. Thermal conditioning during the larval stage can increase coral larvae's ability to tolerate high temperatures in subsequent stages. We studied the response of resistant larvae of Acropora tenuis to thermal stress to increase their thermal tolerance during the juvenile stage. Larvae were exposed to ambient (∼26 °C) and thermal stress (∼31 °C) temperatures. Then, settlement success on preconditioned tiles was determined. After 28 days at ambient temperature, the juveniles were exposed to thermal stress for 14 days, and their survival was assessed. Our results showed that thermal stress in the larval stage did not alter the thermal tolerance of juveniles, and they could not acclimate to heat stress. As a result, the summer's heat waves could potentially threaten their resilience.
Collapse
Affiliation(s)
- Sanaz Hazraty-Kari
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.
| | - Masaya Morita
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | | | - Saki Harii
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.
| |
Collapse
|