1
|
Xie W, Kojima T, Matsusaki H, Zhang D. Aerosol soluble proteins in Asian dust in southwestern Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174086. [PMID: 38908591 DOI: 10.1016/j.scitotenv.2024.174086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Aerosol proteins, as core biological components of bioaerosols, are garnering increasing attention due to their environmental significance, including their roles in atmospheric processes and associated health risks. However, observational data on the proteins are very limited, leaving their distribution and variation in the atmosphere poorly understood. To investigate the long-distance transport of proteins with Asian dust in the Northern Hemisphere middle latitude westerlies to remote downwind areas, we quantified the soluble proteins in aerosol particles, referred to as aerosol soluble proteins (ASPs), collected in the coastal city of Kumamoto, Japan, during the spring of 2023, when three dust events occurred. The concentration of ASPs ranged from 0.22 to 1.68 μg m-3, with an average concentration of 0.73 ± 0.36 μg m-3 under dust conditions and 0.31 ± 0.05 μg m-3 under non-dust conditions. During the dust periods, the largest concentration of ASPs (1.68 μg m-3) coincided with the peak concentration of suspended particulate matter, and the concentration strongly correlated with the mass concentration of particles larger than 2.5 μm, indicating a close dependence of ASPs on dust particles. Primary estimations indicated a dry deposition flux of ASPs at approximately 1.10 ± 0.87 mg m-2 d-1 under the dust conditions. These results prove that Asian dust efficiently transports proteins, facilitating their dispersion in the atmosphere.
Collapse
Affiliation(s)
- Wenwen Xie
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan
| | - Tomoko Kojima
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Hiromi Matsusaki
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan
| | - Daizhou Zhang
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan.
| |
Collapse
|
2
|
Li Y, Schütte W, Dekeukeleire M, Janssen C, Boon N, Asselman J, Lebeer S, Spacova I, De Rijcke M. The immunostimulatory activity of sea spray aerosols: bacteria and endotoxins activate TLR4, TLR2/6, NF-κB and IRF in human cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171969. [PMID: 38547998 DOI: 10.1016/j.scitotenv.2024.171969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
Frequent exposure to sea spray aerosols (SSA) containing marine microorganisms and bioactive compounds may influence human health. However, little is known about potential immunostimulation by SSA exposure. This study focuses on the effects of marine bacteria and endotoxins in SSA on several receptors and transcription factors known to play a key role in the human innate immune system. SSA samples were collected in the field (Ostend, Belgium) or generated in the lab using a marine aerosol reference tank (MART). Samples were characterized by their sodium contents, total bacterial counts, and endotoxin concentrations. Human reporter cells were exposed to SSA to investigate the activation of toll-like receptor 4 (TLR4) in HEK-Blue hTLR4 cells and TLR2/6 in HEK-Blue hTLR2/6 cells, as well as the activation of nuclear factor kappa B (NF-κB) and interferon regulatory factors (IRF) in THP1-Dual monocytes. These responses were then correlated to the total bacterial counts and endotoxin concentrations to explore dose-effect relationships. Field SSA contained from 3.0 × 103 to 6.0 × 105 bacteria/m3 air (averaging 2.0 ± 1.9 × 105 bacteria/m3 air) and an endotoxin concentration ranging from 7 to 1217 EU/m3 air (averaging 389 ± 434 EU/m3 air). In contrast, MART SSA exhibited elevated levels of total bacterial count (from 2.0 × 105 to 2.4 × 106, averaging 7.3 ± 5.5 × 105 cells/m3 air) and endotoxin concentration from 536 to 2191 (averaging 1310 ± 513 EU/m3 air). SSA samples differentially activated TLR4, TLR2/6, NF-κB and IRF. These immune responses correlated dose-dependently with the total bacterial counts, endotoxin levels, or both. This study sheds light on the immunostimulatory potential of SSA and its underlying mechanisms, highlighting the need for further research to deepen our understanding of the health implications of SSA exposure.
Collapse
Affiliation(s)
- Yunmeng Li
- Flanders Marine Institute (VLIZ), InnovOcean Campus, Jacobsenstraat 1, 8400 Ostend, Belgium; Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400 Ostend, Belgium
| | - Wyona Schütte
- Flanders Marine Institute (VLIZ), InnovOcean Campus, Jacobsenstraat 1, 8400 Ostend, Belgium
| | - Max Dekeukeleire
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Colin Janssen
- Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400 Ostend, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Wetenschapspark 1, 8400 Ostend, Belgium
| | - Sarah Lebeer
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Irina Spacova
- Laboratory of Applied Microbiology and Biotechnology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Maarten De Rijcke
- Flanders Marine Institute (VLIZ), InnovOcean Campus, Jacobsenstraat 1, 8400 Ostend, Belgium.
| |
Collapse
|
3
|
Zhang L, Wang Y, Xie W, Li W, Kojima T, Zhang D. High heterogeneity and aging state of mineral particles in a slowly-moving dust plume on the southwestern coast of Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170316. [PMID: 38278236 DOI: 10.1016/j.scitotenv.2024.170316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
Aerosol particles in two size ranges, namely 0.18-1.4 μm (fine) and larger than 1.4 μm (coarse), were collected in the pre-dust, in-dust, and post-dust air during the passage of a slowly-moving dust event at a coastal site in southwestern Japan. We identified the composition and size of individual particles using a scanning electron microscope to investigate the variations during dust passage. The particles could be classified as mineral-seasalt mixtures, non-mixture minerals, sulfur-containing minerals, and seasalt particles, and the number fractions of these type particles in the two size ranges exhibited significant variation across the three periods. In the coarse size range, mixture particles accounted for 17.6 %, 26.8 %, and 37.8 % of the particles in the pre-dust, in-dust, and post-dust air, respectively. Non-mixture particles made up 36.8 %, 29.2 %, and 24.3 % in the same respective periods. In the in-dust air, the average relative ratio of sulfur content in sulfur-containing mineral particles in the coarse range was 5.5 %, whereas in the fine range, it was 17.2 %. The aging state of sea salt components, described by the Cl loss and reflecting the changes in particles due to chemical reactions, exhibited significant differences in the two size ranges. In the fine range, the aging of >90 % particles was predominantly influenced by sulfate formation in the in-dust air. In contrast, nitrate likely played a certain role in both the pre-dust and post-dust air. In the coarse range, the aging was independent of sulfate formation. These results indicate the close dependence of the aging of dust particles on their size and the notable variations of the aged states, underscoring the essentiality to treat dust particles properly according to time and space for a better understanding on their roles in the marine atmosphere.
Collapse
Affiliation(s)
- Long Zhang
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan
| | - Yalou Wang
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan
| | - Wenwen Xie
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan
| | - Wenshuai Li
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China; College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Tomoko Kojima
- Department Earth and Environmental Science, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Daizhou Zhang
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan.
| |
Collapse
|
4
|
Tastassa AC, Sharaby Y, Lang-Yona N. Aeromicrobiology: A global review of the cycling and relationships of bioaerosols with the atmosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168478. [PMID: 37967625 DOI: 10.1016/j.scitotenv.2023.168478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
Airborne microorganisms and biological matter (bioaerosols) play a key role in global biogeochemical cycling, human and crop health trends, and climate patterns. Their presence in the atmosphere is controlled by three main stages: emission, transport, and deposition. Aerial survival rates of bioaerosols are increased through adaptations such as ultra-violet radiation and desiccation resistance or association with particulate matter. Current research into modern concerns such as climate change, global gene transfer, and pathogenicity often neglects to consider atmospheric involvement. This comprehensive review outlines the transpiring of bioaerosols across taxa in the atmosphere, with significant focus on their interactions with environmental elements including abiotic factors (e.g., atmospheric composition, water cycle, and pollution) and events (e.g., dust storms, hurricanes, and wildfires). The aim of this review is to increase understanding and shed light on needed research regarding the interplay between global atmospheric phenomena and the aeromicrobiome. The abundantly documented bacteria and fungi are discussed in context of their cycling and human health impacts. Gaps in knowledge regarding airborne viral community, the challenges and importance of studying their composition, concentrations and survival in the air are addressed, along with understudied plant pathogenic oomycetes, and archaea cycling. Key methodologies in sampling, collection, and processing are described to provide an up-to-date picture of ameliorations in the field. We propose optimization to microbiological methods, commonly used in soil and water analysis, that adjust them to the context of aerobiology, along with other directions towards novel and necessary advancements. This review offers new perspectives into aeromicrobiology and calls for advancements in global-scale bioremediation, insights into ecology, climate change impacts, and pathogenicity transmittance.
Collapse
Affiliation(s)
- Ariel C Tastassa
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, 3200003 Haifa, Israel
| | - Yehonatan Sharaby
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, 3200003 Haifa, Israel
| | - Naama Lang-Yona
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, 3200003 Haifa, Israel.
| |
Collapse
|
5
|
Lang-Yona N, Flores JM, Nir-Zadock TS, Nussbaum I, Koren I, Vardi A. Impact of airborne algicidal bacteria on marine phytoplankton blooms. THE ISME JOURNAL 2024; 18:wrae016. [PMID: 38442732 PMCID: PMC10944695 DOI: 10.1093/ismejo/wrae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 03/07/2024]
Abstract
Ocean microbes are involved in global processes such as nutrient and carbon cycling. Recent studies indicated diverse modes of algal-bacterial interactions, including mutualism and pathogenicity, which have a substantial impact on ecology and oceanic carbon sequestration, and hence, on climate. However, the airborne dispersal and pathogenicity of bacteria in the marine ecosystem remained elusive. Here, we isolated an airborne algicidal bacterium, Roseovarius nubinhibens, emitted to the atmosphere as primary marine aerosol (referred also as sea spray aerosols) and collected above a coccolithophore bloom in the North Atlantic Ocean. The aerosolized bacteria retained infective properties and induced lysis of Gephyrocapsa huxleyi cultures.This suggests that the transport of marine bacteria through the atmosphere can effectively spread infection agents over vast oceanic regions, highlighting its significance in regulating the cell fate in algal blooms.
Collapse
Affiliation(s)
- Naama Lang-Yona
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot 7610001, Israel
- Technion - Israel Institute of Technology, Environmental, Water and Agricultural Engineering, Haifa 3200003, Israel
| | - J Michel Flores
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tal Sharon Nir-Zadock
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Inbal Nussbaum
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ilan Koren
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|