1
|
Zhang Q, Yang Y, Lee CH, Graham NJD, Ng HY. Enhanced methane production and biofouling mitigation by Fe 2O 3 nanoparticle-biochar composites in anaerobic membrane bioreactors. WATER RESEARCH 2025; 280:123522. [PMID: 40132466 DOI: 10.1016/j.watres.2025.123522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/10/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
Conductive materials present an innovative approach to enhancing methane production while facilitating sludge reduction and recovering resources in anaerobic digestion systems. However, the synergistic mechanisms by which composite materials influence the performance of anaerobic membrane bioreactor (AnMBR)-particularly in improving methane production and mitigating membrane fouling, remain underexplored. To address this, Fe2O3 nanoparticle-biochar composites (Fe2O3-BC) were synthesized to enhance electrical conductivity and promote efficient electron transfer in AnMBRs system. These results demonstrated that Fe2O3-BC exhibit high electron donor and electron acceptor capacities, increasing electron transport system (ETS) activity and conductivity by 1.4-fold and 1.7-fold, respectively. This enhancement accelerated the degradation of organic matter during the hydrolysis-acidification stage and boosted the activity of key enzymes (CytC and F420) in the methanogenic phase, resulting in a 42 % increase in methane production. Microbial community analysis indicated that Fe2O3-BC strengthened the methanogenic pathway by fostering efficient metabolic interactions between acidogenic bacteria (e.g., norank_f_Rikenellaceae) and methanogens (e.g., Methanosaeta). Long-term experiments with the Fe3BC25-AnMBR reactor showed a significant reduction in the accumulation of soluble microbial products (SMP) and extracellular polymeric substances (EPS) on membrane surfaces, along with a decline in fouling-related bacteria (e.g., Bacteroidota), mitigating membrane fouling by approximately 20-65 %. Furthermore, Fe3BC25 inhibited biofilm-related quorum sensing (QS) signals (e.g., C6-HSL, AI-1, and AI-2), reducing microbial adhesion and biofouling. Simultaneously, it enhanced methanogenesis by upregulating QS signals associated with methane production (e.g., C10-HSL). Fe2O3-BC is expected to offer a promising strategy for advancing energy-driven AnMBR processes.
Collapse
Affiliation(s)
- Qianqian Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yu Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Chung-Hak Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - How Yong Ng
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| |
Collapse
|
2
|
Li X, Wang S, Wang B, Dang M, Zhao Y. Dynamic transformation and mechanisms of volatile sulfur compound releasing during anaerobic digestion of sludge. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137786. [PMID: 40022927 DOI: 10.1016/j.jhazmat.2025.137786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Volatile sulfur compounds (VSCs) are important nodes of sulfur metabolism; their emission, transformation and corresponding mechanisms during the anaerobic digestion are influenced by physical, chemical and biological components during the dynamic process. This study investigated the dynamic sulfur flows and distributions in terms of various forms and phases in sludge with different solid contents, and revealed the effects of extracellular polymeric substances (EPS) on VSCs and their interactions with microbial metabolites. The generation of H2S and other VSCs from sludge with low solid content (3 %) was fast initially, and the accumulated sulfur distribution into VSCs was 1.21 μg·g-1 TS while sulfate decreased by 11.7 % during the period. With higher solid contents (e.g., 10 %), the sulfur distribution in VSCs was less than 0.1 μg·g-1 TS, and sulfate increased by 10 %. Higher solid contents favored the growth of sulfur-oxidizing microbes (SOB) in the initial stage, while their abundances decreased significantly when sulfur metabolism was less active. In contrast, sulfur-reducing microbes play important roles in sulfate reduction and H2S generation in sludge with low solid contents. EPS compositions and characteristics are important for both sulfur-related microorganisms and VSCs releasing from sludge, and their physical barrier effect is considered as a key factor of reducing VSCs emission from sludge with high solid contents. This study provides a comprehensive understanding of the mechanism of VSC generation and release from dynamic sulfur transformation, contributing to the potential management of VSCs during sludge management.
Collapse
Affiliation(s)
- Xiang Li
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Shengwei Wang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Bowen Wang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Minghui Dang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yan Zhao
- School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
3
|
Chen A, Peng X, Shen T, Zheng L, Wu D, Wang S. Discovery, design, and engineering of enzymes based on molecular retrobiosynthesis. MLIFE 2025; 4:107-125. [PMID: 40313979 PMCID: PMC12042125 DOI: 10.1002/mlf2.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 02/06/2025] [Accepted: 02/13/2025] [Indexed: 05/03/2025]
Abstract
Biosynthesis-a process utilizing biological systems to synthesize chemical compounds-has emerged as a revolutionary solution to 21st-century challenges due to its environmental sustainability, scalability, and high stereoselectivity and regioselectivity. Recent advancements in artificial intelligence (AI) are accelerating biosynthesis by enabling intelligent design, construction, and optimization of enzymatic reactions and biological systems. We first introduce the molecular retrosynthesis route planning in biochemical pathway design, including single-step retrosynthesis algorithms and AI-based chemical retrosynthesis route design tools. We highlight the advantages and challenges of large language models in addressing the sparsity of chemical data. Furthermore, we review enzyme discovery methods based on sequence and structure alignment techniques. Breakthroughs in AI-based structural prediction methods are expected to significantly improve the accuracy of enzyme discovery. We also summarize methods for de novo enzyme generation for nonnatural or orphan reactions, focusing on AI-based enzyme functional annotation and enzyme discovery techniques based on reaction or small molecule similarity. Turning to enzyme engineering, we discuss strategies to improve enzyme thermostability, solubility, and activity, as well as the applications of AI in these fields. The shift from traditional experiment-driven models to data-driven and computationally driven intelligent models is already underway. Finally, we present potential challenges and provide a perspective on future research directions. We envision expanded applications of biocatalysis in drug development, green chemistry, and complex molecule synthesis.
Collapse
Affiliation(s)
- Ancheng Chen
- Shanghai Zelixir Biotech Company Ltd.ShanghaiChina
| | - Xiangda Peng
- Shanghai Zelixir Biotech Company Ltd.ShanghaiChina
| | - Tao Shen
- Shanghai Zelixir Biotech Company Ltd.ShanghaiChina
| | | | - Dong Wu
- Shanghai Zelixir Biotech Company Ltd.ShanghaiChina
| | - Sheng Wang
- Shanghai Zelixir Biotech Company Ltd.ShanghaiChina
| |
Collapse
|
4
|
Aryanti PTP, Harsono B, Biantoro MFW, Romariyo R, Putri TA, Hakim AN, Setia GA, Saputra DI, Khoiruddin K. The role of membrane technology in palm oil mill effluent (POME) decontamination: Current trends and future prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124094. [PMID: 39837149 DOI: 10.1016/j.jenvman.2025.124094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 11/15/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025]
Abstract
This article reviews the role of membrane systems in treating palm oil mill effluent (POME), a waste generated by the palm industry. The review focuses on various membrane systems such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO), highlighting their effectiveness in removing pollutants and recovering water. Special attention is given to hybrid systems integrating membrane bioreactors (MBRs) and other advanced processes to enhance fouling control, improve water quality, and promote sustainability. Several case studies and quantitative data have demonstrated the reduction of chemical oxygen demand (COD), total suspended solids (TSS), and biological oxygen demand (BOD), illustrating the impact of these technologies. This comprehensive review also explores recent advancements, such as the integration of Zero Liquid Discharge (ZLD) processes, providing insights into the benefits and challenges of membrane technology for POME treatment. This article aims to inform future research and guide industrial applications toward more sustainable and efficient wastewater management in the palm oil industry.
Collapse
Affiliation(s)
- Putu Teta Prihartini Aryanti
- Chemical Engineering Department, Faculty of Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Sudirman, Cimahi, West Java, Indonesia.
| | - Budi Harsono
- Chemical Engineering Department, Faculty of Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Sudirman, Cimahi, West Java, Indonesia
| | - Muhammad Fadlan Warsa Biantoro
- Chemical Engineering Department, Faculty of Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Sudirman, Cimahi, West Java, Indonesia
| | - Riyo Romariyo
- Chemical Engineering Department, Faculty of Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Sudirman, Cimahi, West Java, Indonesia
| | - Tiara Ariani Putri
- Chemical Engineering Department, Faculty of Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Sudirman, Cimahi, West Java, Indonesia
| | - Ahmad Nurul Hakim
- Chemical Engineering Department, Faculty of Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Sudirman, Cimahi, West Java, Indonesia
| | - Giri Angga Setia
- Electrical Engineering, Faculty of Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Sudirman, Cimahi, West Java, Indonesia
| | - Dede Irawan Saputra
- Electrical Engineering, Faculty of Engineering, Universitas Jenderal Achmad Yani, Jl. Terusan Jenderal Sudirman, Cimahi, West Java, Indonesia
| | - Khoiruddin Khoiruddin
- Chemical Engineering Department, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia; Research Center for Biosciences and Biotechnology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
| |
Collapse
|
5
|
Phuc-Hanh Tran D, You SJ, Bui XT, Wang YF, Ramos A. Anaerobic membrane bioreactors for municipal wastewater: Progress in resource and energy recovery improvement approaches. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121855. [PMID: 39025005 DOI: 10.1016/j.jenvman.2024.121855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/11/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Anaerobic membrane bioreactor (AnMBR) offer promise in municipal wastewater treatment, with potential benefits including high-quality effluent, energy recovery, sludge reduction, and mitigating greenhouse gas emissions. However, AnMBR face hurdles like membrane fouling, low energy recovery, etc. In light of net-zero carbon target and circular economy strategy, this work sought to evaluate novel AnMBR configurations, focusing on performance, fouling mitigation, net-energy generation, and nutrients-enhancing integrated configurations, such as forward osmosis (FO), membrane distillation (MD), bioelectrochemical systems (BES), membrane photobioreactor (MPBR), and partial nitrification-anammox (PN/A). In addition, we highlight the essential role of AnMBR in advancing the circular economy and propose ideas for the water-energy-climate nexus. While AnMBR has made significant progress, challenges, such as fouling and cost-effectiveness persist. Overall, the use of novel configurations and energy recovery strategies can further improve the sustainability and efficiency of AnMBR systems, making them a promising technology for future sustainable municipal wastewater treatment.
Collapse
Affiliation(s)
- Duyen Phuc-Hanh Tran
- Department of Civil Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, 32023, Taiwan
| | - Sheng-Jie You
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, 32023, Taiwan.
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Ho Chi Minh City, 700000, Viet Nam
| | - Ya-Fen Wang
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Sustainable Environmental Education Center, Chung Yuan Christian University, Taoyuan, 32023, Taiwan
| | - Aubrey Ramos
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 32023, Taiwan; Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan, 32023, Taiwan
| |
Collapse
|
6
|
Yang Y, Guo W, Hao Ngo H, Zhang X, Ye Y, Peng L, Wei C, Zhang H. Mini critical review: Membrane fouling control in membrane bioreactors by microalgae. BIORESOURCE TECHNOLOGY 2024; 406:131022. [PMID: 38914234 DOI: 10.1016/j.biortech.2024.131022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/31/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Membrane bioreactors (MBRs) hold significant promise for wastewater treatment, yet the persistent challenge of membrane fouling impedes their practical application. One promising solution lies in the synergy between microalgae and bacteria, offering efficient nutrient removal, reduced energy consumption, and potential mitigation of extracellular polymeric substances (EPS) concentrations. Inoculating microalgae presents a promising avenue to address membrane fouling in MBRs. This review marks the first exploration of utilizing microalgae for membrane fouling control in MBR systems. The review begins with a comprehensive overview of the evolution and distinctive traits of microalgae-MBRs. It goes further insight into the performance and underlying mechanisms facilitating the reduction of membrane fouling through microalgae intervention. Moreover, the review not only identifies the challenges inherent in employing microalgae for membrane fouling control in MBRs but also illuminates prospective pathways for future advancement in this burgeoning field.
Collapse
Affiliation(s)
- Yuanying Yang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China.
| | - Xinbo Zhang
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Yuanyao Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan 430074, China
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Chunhai Wei
- Department of Municipal Engineering, School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Huiying Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
7
|
Jiang Z, Xia Z, Li Y, Ao Z, Fan H, Qi L, Liu G, Wang H. Effectiveness of cloth media filters on mitigating membrane fouling in anaerobic filter membrane bioreactors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174600. [PMID: 38986708 DOI: 10.1016/j.scitotenv.2024.174600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/30/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Membrane fouling is a persistent challenge that has impeded the broader application of anaerobic membrane bioreactors (AnMBRs). To mitigate membrane fouling, between the outlet of the UASB anaerobic bioreactor and the PVDF membrane to form the anaerobic filter membrane bioreactor (AnFMBR) system. Through comprehensive experiments, the optimal pore size for cloth filters was determined to be 50 μm. A comprehensive assessment over 140 days of operation shows that the novel AnFMBR had significantly greater resistance to membrane pollution than the traditional AnMBR. The AnFMBR system membrane tank exhibited lower mixed liquor suspended solid and mixed liquor volatile suspended solid concentrations, smaller sludge particle sizes, increased hydrophilicity of sludge flocs, and optimized microbial community distribution compared to those of conventional AnMBRs. The total solids foulant accumulation rate in the AnMBR was 5.1 g/m2/day, while in the AnFMBR, the rate was 2.4 g/m2/day, marking a 53.7 % decrease in fouling rate for the AnFMBR compared with the AnMBR. This decrease indicates that integrating the filtration assembly significantly lowered the rate of solid foulant accumulation on the membrane surface, primarily by controlling the buildup of solid foulants in the cake layer, thereby alleviating membrane fouling. AnFMBR compared to AnMBR, the membrane fouling rate halved, effectively doubled the interval between membrane cleaning from seven days, as observed in the AnMBR system, to fourteen days. These findings underscore the potential of integrating cloth media filters into AnMBRs to improve operational efficiency, economic viability, and sustainability.
Collapse
Affiliation(s)
- Zhao Jiang
- Low-carbon Water Environment Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Zhiheng Xia
- Low-carbon Water Environment Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Yinghao Li
- Low-carbon Water Environment Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Ziding Ao
- Low-carbon Water Environment Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Haitao Fan
- Low-carbon Water Environment Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Lu Qi
- Low-carbon Water Environment Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Guohua Liu
- Low-carbon Water Environment Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Hongchen Wang
- Low-carbon Water Environment Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
8
|
Ren W, Zhang S, Liu Y, Ju W, Liu G, Xie K. Study on efficiency and mechanism of ultrasonic controlling membrane fouling in ceramic membrane bioreactors. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11032. [PMID: 38698675 DOI: 10.1002/wer.11032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024]
Abstract
In recent years, ceramic membranes have been increasingly used in membrane bioreactors (MBRs). However, membrane fouling was still the core issue restricting the large-scale engineering application of ceramic MBRs. As a novel and alternative technology, ultrasonic could be used to control membrane fouling. This research focused on the efficiency and mechanism of ultrasonic controlling membrane fouling in ceramic MBRs. The results showed that ultrasonic reduced the sludge concentration in MBR, and the average particle size of sludge was always in a high range. The sludge activity of the system was stable at 6-9 (mg O2·(g MLSS·h)-1), indicating that ultrasonic did not destroy the activity of microorganisms in the system. The extracellular polymer substance (EPS) of the ultrasonic group was slightly higher than that of the control group, while the soluble microbial product (SMP) content was relatively stable. The ceramic membrane of the ultrasonic group has a partial retention effect on the organic components. The application of ultrasonic slowed down the decrease of the hydrophilicity of the ceramic membrane. The main pollutants on the membrane surface exist in the form of aromatic and heteroaromatic rings, alkynes, and so forth. Ultrasonic removes the amide substances from the membrane surface. Membrane fouling resistance is mainly due to membrane pore blockage, accounting for 75.53%. PRACTITIONER POINTS: Enrich the research on the mechanism of ultrasonic technology in membrane fouling control. The MBR can still operate normally with ultrasonic applied. The time for the ceramic membrane to reach the fouling end point is 2.4 times that without ultrasonic. The main cause of membrane fouling was pore blocking, accounting for 75.53%.
Collapse
Affiliation(s)
- Wenyi Ren
- School of Civil Engineering and Architecture, University of Jinan, Jinan, China
| | - Shoubin Zhang
- School of Civil Engineering and Architecture, University of Jinan, Jinan, China
| | - Yutian Liu
- Jinan Municipal Engineering Design &Research Institute (Group) CO., LTD., Jinan, China
| | - Weipeng Ju
- Jinan Municipal Engineering Design &Research Institute (Group) CO., LTD., Jinan, China
| | - Guicai Liu
- School of Civil Engineering and Architecture, University of Jinan, Jinan, China
| | - Kang Xie
- School of Civil Engineering and Architecture, University of Jinan, Jinan, China
| |
Collapse
|
9
|
Im HR, Kim CM, Choi PJ, Jang A. Non-destructive monitoring and prediction of fouling by organic matters and residual anionic coagulant during membrane process. CHEMOSPHERE 2024; 356:141778. [PMID: 38554864 DOI: 10.1016/j.chemosphere.2024.141778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
Physical fouling characteristics on silicon carbide (SiC) membranes induced by various organic matter compounds vary depending on the presence of calcium ions (Ca2+). Both destructive techniques (morphological surface analysis) and non-destructive techniques (fouling properties monitoring) were used to determine the fouling mechanisms and behavior during the membrane filtration systems. Destructive analysis and a modified Hermia model were employed to assess the fouling mechanisms. Fouling behavior was also analyzed through non-destructive monitoring techniques including optical coherence tomography (OCT) and three-dimensional laser scanning confocal microscopy (3D-LSM). At concentrations of 10, 30, and 100 mg/L without Ca2+, the flux decreased by 57-95% for humic acid (HA) and anionic polyacrylamide (APAM). APAM exhibited a notable removal rate of up to 56% without Ca2+. At concentration of 10, 30, and 100 mg/L in the absence of Ca2+, the flux decreased by 6-8% for sodium alginate (SA). However, the addition of Ca2+ led to a reduction in the flux for SA by up to 91% and resulted in a removal rate of 40%. Furthermore, addition of Ca2+ led to an alteration of the fouling characteristics of HA and SA. In the case of HA, higher concentrations resulted in elevated thickness and roughness with correlation coefficients of 0.991 and 0.992, respectively. For SA, increased SA concentration led to a thicker (correlation coefficient of 0.999) but smoother surfaces (correlation coefficients of 0.502). Monitoring of these physical characteristics of the fouling layer through non-destructive analysis is crucial for effective fouling management, optimization of the system performance and extending the lifespan of the membrane. By continuously assessing the fouling layer thickness and surface roughness, we expect to be able to provide insights on the fouling behavior, identify trends, that can help scientists and engineers to make informed decisions regarding fouling control strategies in future.
Collapse
Affiliation(s)
- Hong Rae Im
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
| | - Chang-Min Kim
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea; Future and Fusion Lab of Architectural, Civil and Environmental Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Paula Jungwon Choi
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
| | - Am Jang
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
| |
Collapse
|
10
|
Zhang X, Fan Y, Hao T, Chen R, Zhang T, Hu Y, Li D, Pan Y, Li YY, Kong Z. Insights into current bio-processes and future perspectives of carbon-neutral treatment of industrial organic wastewater: A critical review. ENVIRONMENTAL RESEARCH 2024; 241:117630. [PMID: 37993050 DOI: 10.1016/j.envres.2023.117630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023]
Abstract
With the rise of the concept of carbon neutrality, the current wastewater treatment process of industrial organic wastewater is moving towards the goal of energy conservation and carbon emission reduction. The advantages of anaerobic digestion (AD) processes in industrial organic wastewater treatment for bio-energy recovery, which is in line with the concept of carbon neutrality. This study summarized the significance and advantages of the state-of-the-art AD processes were reviewed in detail. The application of expanded granular sludge bed (EGSB) reactors and anaerobic membrane bioreactor (AnMBR) were particularly introduced for the effective treatment of industrial organic wastewater treatment due to its remarkable prospect of engineering application for the high-strength wastewater. This study also looks forward to the optimization of the AD processes through the enhancement strategies of micro-aeration pretreatment, acidic-alkaline pretreatment, co-digestion, and biochar addition to improve the stability of the AD system and energy recovery from of industrial organic wastewater. The integration of anaerobic ammonia oxidation (Anammox) with the AD processes for the post-treatment of nitrogenous pollutants for the industrial organic wastewater is also introduced as a feasible carbon-neutral process. The combination of AnMBR and Anammox is highly recommended as a promising carbon-neutral process for the removal of both organic and inorganic pollutants from the industrial organic wastewater for future perspective. It is also suggested that the AD processes combined with biological hydrogen production, microalgae culture, bioelectrochemical technology and other bio-processes are suitable for the low-carbon treatment of industrial organic wastewater with the concept of carbon neutrality in future.
Collapse
Affiliation(s)
- Xinzheng Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yuqin Fan
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tao Zhang
- College of Design and Innovation, Shanghai International College of Design & Innovation, Tongji University, Shanghai, 200092, China
| | - Yong Hu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Dapeng Li
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yang Pan
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi, 980-8579, Japan
| | - Zhe Kong
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
11
|
Lin X, Zhou Q, Xu H, Chen H, Xue G. Advances from conventional to biochar enhanced biotreatment of dyeing wastewater: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167975. [PMID: 37866601 DOI: 10.1016/j.scitotenv.2023.167975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
DW (Dyeing wastewater) contains a large amount of dye organic compounds. A considerable proportion of dye itself or its intermediate products generated during wastewater treatment process exhibits CMR (Carcinogenic/Mutagenic/Toxic to Reproduction) toxicity. Compared with physicochemical methods, biological treatment is advantageous in terms of operating costs and greenhouse gas emissions, and has become the indispensable mainstream technology for DW treatment. This article reviews the adsorption and degradation mechanisms of dye organic compounds in wastewater and analyzed different biological processes, ranging from traditional methods to processes enhanced by biochar (BC). For traditional biological processes, microbial characteristics and communities were discussed, as well as the removal efficiency of different bioreactors. BC has adsorption and redox electron mediated effects, and coupling with biological treatment can further enhance the process of biosorption and degradation. Although BC coupled biological treatment shows promising dye removal, further research is still needed to optimize the treatment process, especially in terms of technical and economic competitiveness.
Collapse
Affiliation(s)
- Xumeng Lin
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qifan Zhou
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Huanghuan Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hong Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200000, China.
| |
Collapse
|
12
|
Nouhou Moussa AW, Sawadogo B, Konate Y, Thianhoun B, Sidibe SDS, Heran M. Influence of Solid Retention Time on Membrane Fouling and Biogas Recovery in Anerobic Membrane Bioreactor Treating Sugarcane Industry Wastewater in Sahelian Climate. MEMBRANES 2023; 13:710. [PMID: 37623771 PMCID: PMC10456350 DOI: 10.3390/membranes13080710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/20/2023] [Accepted: 06/04/2023] [Indexed: 08/26/2023]
Abstract
Sugarcane industries produce wastewater loaded with various pollutants. For reuse of treated wastewater and valorization of biogas in a Sahelian climatic context, the performance of an anaerobic membrane bioreactor was studied for two solid retention times (40 days and infinity). The pilot was fed with real wastewater from a sugarcane operation with an organic load ranging from 15 to 22 gCOD/L/d for 353 days. The temperature in the reactor was maintained at 35 °C. Acclimatization was the first stage during which suspended solids (SS) and volatile suspended solids (VSS) evolved from 9 to 13 g/L and from 5 to 10 g/L respectively, with a VSS/SS ratio of about 80%. While operating the pilot at a solid retention time (SRT) of 40 days, the chemical oxygen demand (COD) removal efficiency reached 85%, and the (VSS)/(TSS) ratio was 94% in the reactor. At infinity solid retention time, these values were 96% and 80%, respectively. The 40-day solid retention time resulted in a change in transmembrane pressure (TMP) from 0.0812 to 2.18 bar, with a maximum methane production of 0.21 L/gCOD removed. These values are lower than those observed at an infinite solid retention time, at which the maximum methane production of 0.29 L/gCOD was achieved, with a corresponding transmembrane pressure variation of up to 3.1 bar. At a shorter solid retention time, the fouling seemed to decrease with biogas production. However, we note interesting retention rates of over 95% for turbidity.
Collapse
Affiliation(s)
- Abdoul Wahab Nouhou Moussa
- Laboratoire Eaux Hydro-Systèmes et Agriculture (LEHSA), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la science, Ouagadougou 01 BP 594, Burkina Faso; (B.S.); (Y.K.); (B.T.)
| | - Boukary Sawadogo
- Laboratoire Eaux Hydro-Systèmes et Agriculture (LEHSA), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la science, Ouagadougou 01 BP 594, Burkina Faso; (B.S.); (Y.K.); (B.T.)
| | - Yacouba Konate
- Laboratoire Eaux Hydro-Systèmes et Agriculture (LEHSA), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la science, Ouagadougou 01 BP 594, Burkina Faso; (B.S.); (Y.K.); (B.T.)
| | - Brony Thianhoun
- Laboratoire Eaux Hydro-Systèmes et Agriculture (LEHSA), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la science, Ouagadougou 01 BP 594, Burkina Faso; (B.S.); (Y.K.); (B.T.)
| | - Sayon dit Sadio Sidibe
- Laboratoire Energies Renouvelable et Efficacité Energétique (LaBEREE), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la science, Ouagadougou 01 BP 194, Burkina Faso;
| | - Marc Heran
- Institut Européen des Membranes (IEM), UMR-5635, Université de Montpellier, CNRS, Place Eugène Bataillon, CEDEX 5, 34095 Montpellier, France;
| |
Collapse
|
13
|
Anaerobic Membrane Bioreactor (AnMBR) for the Removal of Dyes from Water and Wastewater: Progress, Challenges, and Future Perspectives. Processes (Basel) 2023. [DOI: 10.3390/pr11030855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The presence of dyes in aquatic environments can have harmful effects on aquatic life, including inhibiting photosynthesis, decreasing dissolved oxygen levels, and altering the behavior and reproductive patterns of aquatic organisms. In the initial phase of this review study, our aim was to examine the categories and properties of dyes as well as the impact of their toxicity on aquatic environments. Azo, phthalocyanine, and xanthene are among the most frequently utilized dyes, almost 70–80% of used dyes, in industrial processes and have been identified as some of the most commonly occurring dyes in water bodies. Apart from that, the toxicity effects of dyes on aquatic ecosystems were discussed. Toxicity testing relies heavily on two key measures: the LC50 (half-lethal concentration) and EC50 (half-maximal effective concentration). In a recent study, microalgae exposed to Congo Red displayed a minimum EC50 of 4.8 mg/L, while fish exposed to Disperse Yellow 7 exhibited a minimum LC50 of 0.01 mg/L. Anaerobic membrane bioreactors (AnMBRs) are a promising method for removing dyes from water bodies. In the second stage of the study, the effectiveness of different AnMBRs in removing dyes was evaluated. Hybrid AnMBRs and AnMBRs with innovative designs have shown the capacity to eliminate dyes completely, reaching up to 100%. Proteobacteria, Firmicutes, and Bacteroidetes were found to be the dominant bacterial phyla in AnMBRs applied for dye treatment. However, fouling has been identified as a significant drawback of AnMBRs, and innovative designs and techniques are required to address this issue in the future.
Collapse
|