1
|
Lin W, Guo X, Wang Y, Zhao J, Cheng X, Li Y, Zhou C. Dissolved organic matter mediates the interactions between bacterial community and heavy metal fractionation in contaminated coal mine soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 297:118237. [PMID: 40286739 DOI: 10.1016/j.ecoenv.2025.118237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Heavy metal (HM) contamination in coal mine soils disrupts local bacterial networks, leading to prolonged soil deterioration. Dissolved organic matter (DOM), a crucial soil component, actively modulates both bacterial metabolism and HM mobilization. Despite its significance, our understanding of the complex interactions among bacterial communities, soil chemical and DOM properties, and HM fractionation remains limited. In this study, DOM and bacterial communities from three contaminated mines with varying HM levels and soil properties were analyzed using optical methods and high-throughput sequencing technique. Our results revealed pH and DOM composition, especially the ratio of recalcitrant to labile substances, as key environmental drivers of HM mobilization. Moreover, the composition of bacterial community, particularly the keystone and abundant species, exhibits pronounced site-specificity and HM-dependency. Distinct characteristic genera that are pertinent to HM tolerance/mobility were identified across three mines. Specifically, in Zibo (ZB) soils, Rhodococcus, Acinetobacter, and Pseudomonas significantly regulated the fractionation of Pb, Cu, Se, and Hg possibly via protein-like exudates releasing. In Zaozhuang (ZZ) soils, relationships were recognized between Reyranella, oxides associated Pb, and soil cation exchange capacity. Paenibacillus and Fictibacillus contributed to Se mobilization/tolerance in Linyi (LY) soils. Based on these field findings, two mechanisms were identified for how DOM mediates interactions between HM fractionation and bacterial communities. First, metal-resistant bacteria can produce labile DOM compounds, modifying HM fractionation and reducing metal bioavailability, as observed in ZB soils. Second, humic substances in DOM promoted the development of cohesive bacterial networks featuring metal-resistant keystone bacteria, thereby enhancing community resistance to metal contamination, as evidenced in LY and ZZ soils. Overall, this study provides field evidence elucidating the multilateral interactions among bacterial communities, soil chemical and DOM properties, and HM fractionation, underscoring the significant role of DOM in connecting soil bacterial activity and HM mobilization.
Collapse
Affiliation(s)
- Wei Lin
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Xiaolong Guo
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Yili Wang
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Junlin Zhao
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Xiang Cheng
- Guangdong-Hong Kong Joint Laboratory for Water Security, Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Yingjie Li
- School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Chunyang Zhou
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
2
|
Xue R, Zhao Q, Yuan L, Wei L, Jiang J, Ding J, Wang K, Wang Y. Review of Fe/Mn-based chemical stabilizers for remediating arsenic and antimony co-contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 387:125879. [PMID: 40412179 DOI: 10.1016/j.jenvman.2025.125879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 05/14/2025] [Accepted: 05/17/2025] [Indexed: 05/27/2025]
Abstract
Arsenic (As) and antimony (Sb) frequently co-occur in soil contaminated by mining, smelting and traffic emissions, creating an urgent need for effectively simultaneous remediation strategies. Although chemical stabilization has garnered significant attention for its high remediation efficiency, a systematic comparison of stabilization effects and mechanisms for As and Sb in co-contaminated soil remained unexplored. Iron-based materials are widely recognized as the most effective stabilizers for As and Sb in soil. Meanwhile, manganese-based materials, owing to their superior oxidizing capacity that maintains As and Sb in the less toxic pentavalent species, have also attracted considerable interest. Iron-manganese-based materials provide an efficient solution for stabilizing As and Sb in soil by synergistically combining the advantages of both iron and manganese components. This review therefore elaborated on the core stabilizers, including iron-, manganese-, and iron-manganese-based materials. The stabilization efficiencies and underlying mechanisms of As and Sb in soil were comprehensively examined, with key environmental factors also discussed in relation to their stabilization performance. As widely used soil amendments, raw biochar and clay materials demonstrate limited efficacy in stabilizing As and Sb in soil. However, they can be employed as functional modifiers to enhance the dispersion of iron or manganese particles, thereby improving stabilization performance. While current progress is systematically evaluated, the development of stabilizers enabling simultaneous immobilization of As and Sb remains a critical research priority for future research.
Collapse
Affiliation(s)
- Ruiyuan Xue
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Luzi Yuan
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jing Ding
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Kun Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yipeng Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
3
|
Huang H, Luo J, Ma R, Zhang D, Sun S, Du C. Review on microwave immobilization of soil heavy metals: Processes and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122824. [PMID: 39378819 DOI: 10.1016/j.jenvman.2024.122824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Soil contamination with heavy metals (HMs) is still a global issue. The maintenance of long-term stability of HMs in soil during immobilization remediation is a challenge. Microwave (MW) technology can promote the immobilization of HMs in the form of crystals and minerals, thus enhancing their resistance of corrosion. This review provides a comprehensive introduction to the basics of MW irradiation through 177 papers, and reviews the research progress of MW involvement in the immobilization of soil HMs in 10 years. The effects of MW parameter settings, absorber/fixative types and soil physicochemical properties on immobilized HMs are investigated. The immobilization mechanisms of HMs are discussed, high-temperature physical encapsulation and chemical stabilization are the two basic mechanisms in the immobilization process. MW has a unique heating method to achieve efficient remediation by shortening remediation time, reducing the activation energy of reactions and promoting the transformation of stabilization products. Finally, the current limitations of MW in the remediation of HMs contaminated soils are systematically discussed and the corresponding proposed solutions are presented which may provide directions for further laboratory studies. There are still serious problems in taking the results obtained in the laboratory to the full scale. Thus, process optimization, scale-up, design and demonstration are strongly desired. In summary, this review may help new researchers to seize the research frontier in MW and can serve as a reference for future development of MW technology in soil remediation.
Collapse
Affiliation(s)
- Huiyin Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Juan Luo
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Rui Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Dengcai Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shichang Sun
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Chaoyong Du
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
4
|
Liu JL, Yao J, Tang C, Ma B, Liu X, Bashir S, Sunahara G, Duran R. A critical review on bioremediation technologies of metal(loid) tailings: Practice and policy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121003. [PMID: 38692032 DOI: 10.1016/j.jenvman.2024.121003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/10/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Abstract
Globally, most high-grade ores have already been exploited. Contemporary mining tends to focus on the extraction of lower-grade ores thereby leaving large stored tailings open to the environment. As a result, current mines have emerged as hotspots for the migration of metal(loid)s and resistance genes, thereby potentially contributing to a looming public health crisis. Therefore, the management and remediation of tailings are the most challenging issues in environmental ecology. Bioremediation, a cost-effective solution for the treatment of multi-element mixed pollution (co-contamination), shows promise for the restoration of mine tailings. This review focuses on the bioremediation technologies developed to untangle the issues of non-ferrous metal mine tailings. These technologies address the environmental risks of multi-element exposure to the ecosystem and human health risks. It provides a review and comparison of current bioremediation technologies used to mineralize metal(loid)s. The role of plant-microorganisms and their mechanisms in the remediation of tailings are also discussed. The importance of "treating waste with wastes" is crucial for advancing bioremediation technologies. This approach underscores the potential for waste materials to contribute to environmental cleanup processes. The concept of a circular economy is pertinent in this context, emphasizing recycling and reuse. There's an immediate need for international collaboration. Collaboration is needed in policy-making, funding, and data accessibility. Sharing data is essential for the growth of bioremediation globally.
Collapse
Affiliation(s)
- Jian-Li Liu
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China.
| | - Jun Yao
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Chuiyun Tang
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Bo Ma
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Xingyu Liu
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Safdar Bashir
- Department of Soil and Water Systems, University of Idaho, Moscow, ID, 83844, USA
| | - Geoffrey Sunahara
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China; Department of Natural Resource Sciences, McGill University, Montreal, Quebec, H9X3V9, Canada
| | - Robert Duran
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China; Université de Pau et des Pays de l'Adour/E2S UPPA, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France
| |
Collapse
|
5
|
Ha Z, Ma M, Tan X, Lan Y, Lin Y, Zhang TC, Du D. Remediation of arsenic contaminated water and soil using mechanically (ball milling) activated and pyrite-amended electrolytic manganese slag. ENVIRONMENTAL RESEARCH 2023; 234:116607. [PMID: 37429402 DOI: 10.1016/j.envres.2023.116607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/23/2023] [Accepted: 07/08/2023] [Indexed: 07/12/2023]
Abstract
With the development of industry, heavy metal (HM) pollution of soil has become an increasingly serious problem. Using passivators made of industrial by-products to immobilize HMs in contaminated soil is a promising in-situ remediation technology. In this study, the electrolytic manganese slag (EMS) was modified into a passivator (named M-EMS) by ball milling, and the effects of M-EMS on adsorption of As(V) in aquatic samples and on immobilization of As(V) and other HMs in soil samples were investigated under different conditions. Results demonstrated that M-EMS had a maximum As(V) adsorption capacity of 65.3 mg/g in the aquatic samples. Adding M-EMS to the soil reduced the leaching of As (from 657.2 to 319.8 μg/L) and other HMs after 30 d of incubation, reduced the bioavailability of As(V) and improved the quality and microbial activity of the soil. The mechanism for M-EMS to immobilize As in the soil are complex reactions, ion exchange reaction with As and electrostatic adsorption. This work provides new ideas of using waste residue matrix composites for sustainable remediation of Arsenic in the aquatic environment and soil.
Collapse
Affiliation(s)
- Zhihao Ha
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, South-Central Minzu University, Wuhan, 430074, China
| | - Mengyu Ma
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, South-Central Minzu University, Wuhan, 430074, China; Hubei Novel Reactor & Green Chemical Technology Key Laboratory, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Xiaohan Tan
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, South-Central Minzu University, Wuhan, 430074, China
| | - Yanxin Lan
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, South-Central Minzu University, Wuhan, 430074, China
| | - Yanmin Lin
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, South-Central Minzu University, Wuhan, 430074, China
| | - Tian C Zhang
- Civil & Environmental Engineering Department, College of Engineering, University of Nebraska-Lincoln, Omaha, NE, 68182, USA
| | - Dongyun Du
- Hubei Province Engineering Research Center for Control and Treatment of Heavy Metal Pollution, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
6
|
Li C, Dong P, Yan J, Gong R, Meng Q, Yao J, Yu H, Ma Y, Liu B, Xie R. Analytical study on heavy metal output fluxes and source apportionment of a non-ferrous smelter in southwest China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121867. [PMID: 37270050 DOI: 10.1016/j.envpol.2023.121867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/28/2023] [Accepted: 05/21/2023] [Indexed: 06/05/2023]
Abstract
Abandoned Pb/Zn smelters are often accompanied by a large amount of smelting slag, which is a serious environmental problem. Previous studies have demonstrated that slag deposits pose an environmental threat even if the smelters are shut down. Herein, a Pb/Zn smelter and its impacted zone in GeJiu, Yunnan, China were selected as the study area. The risk and source apportionment of heavy metals (HMs) in the soil of the impacted zone were systematically studied. Based on the hydrogeological features, the migration path and output fluxes of the HMs released from smelting slag to the impacted zone were investigated. The HM contents (Cd, As, Zn, Pb, and Cu) in the soil substantially exceeded the screening values of the Chinese soil standard (GB15618-2018). Based on the results of the Pb isotopic and statistical analyses for source apportionment, the contaminated sites and agricultural irrigation water had a large impact on the HMs of soil. The hydrological analysis results showed that runoff, as an HM migration path under rainfall, continued to affect the environment. The water balance calculations using the Hydrologic Evaluation of Landfill Performance model showed that the rainfall was distributed on site as follows: evaporation (57.35%), runoff (32.63%), and infiltration (10.02%). Finally, the output fluxes were calculated in combination with the leaching experiment. As, Zn, Cd, Pb, and Cu runoff had the output fluxes of 6.1 × 10-3, 4.2 × 10-3, 4.1, 1.4 × 10-2, and 7.2 × 10-4 mg/kg/y, and infiltration of 1.9 × 10-3, 1.3 × 10-3, 1.3, 4.0 × 10-4, and 2.2 × 10-4 mg/kg/y, respectively. Therefore, this study offers theoretical and scientific recommendations for effective environmental management and engineering remediation.
Collapse
Affiliation(s)
- Chenchen Li
- Faculty of Metallurgy and Energy Engineering, National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials Or Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, China
| | - Peng Dong
- Faculty of Metallurgy and Energy Engineering, National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials Or Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, China
| | - Jin Yan
- Faculty of Metallurgy and Energy Engineering, National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials Or Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, China
| | - Rui Gong
- Faculty of Metallurgy and Energy Engineering, National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials Or Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, China
| | - Qi Meng
- Faculty of Metallurgy and Energy Engineering, National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials Or Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, China
| | - Jun Yao
- Faculty of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Hanjing Yu
- Faculty of Metallurgy and Energy Engineering, National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials Or Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, China
| | - Yaoqiang Ma
- Faculty of Metallurgy and Energy Engineering, National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials Or Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, China
| | - Bang Liu
- Faculty of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Ruosong Xie
- Faculty of Metallurgy and Energy Engineering, National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials Or Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, China.
| |
Collapse
|