1
|
Liu YH, Huang JN, Wen B, Gao JZ, Chen ZZ. Comprehensive assessment of three crayfish culture modes: From production performance to environmental sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176470. [PMID: 39317249 DOI: 10.1016/j.scitotenv.2024.176470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Integrated agriculture-aquaculture has emerged as a promising ecological development model. Crayfish, a popular aquaculture species, are traditionally reared either in monoculture ponds (mono-C) or in rice-crayfish polyculture system (poly-RC). In this study, we introduced a novel polyculture system by combining fruit tree with crayfish (poly-FC), aiming to compare these three crayfish culture modes in terms of production performance and ecological sustainability. The results indicated that crayfish reared in the two polyculture modes exhibited significantly higher specific growth rate and condition factor compared to those in mono-C. Crayfish cultured in poly-FC also showed better muscle quality and higher levels of crude fat and flavor or essential amino acids. Isotope mixing model showed that feed and benthic animals were the primary food sources of crayfish in mono-C, whereas aquatic plants, fruit litter or rice contributed more to those in polyculture modes. For greenhouse gas emissions, poly-FC mode emitted almost no CO2 and N2O even favored negative CH4 emission, while poly-RC and mono-C modes showed positive emissions of CH4 and CO2, respectively. Supported by metagenomics, the sink of CH4 in poly-FC was probably due to the lower mcr abundance but the higher pmo abundance in water. The low production and emission of N2O in poly-FC might result from the low-abundant Nitrospirae_bacterium and its coding gene norC in sediment, consistent with the lower denitrification rate but the higher NO3- concentration than mono-C. Overall, our findings reveal the superiority of polyculture of fruit tree with crayfish in terms of production performance and greenhouse gas emissions in the system.
Collapse
Affiliation(s)
- Yuan-Hao Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jun-Nan Huang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Bin Wen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Jian-Zhong Gao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zai-Zhong Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
He D, Ma H, Hu D, Wang X, Dong Z, Zhu B. Biochar for sustainable agriculture: Improved soil carbon storage and reduced emissions on cropland. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123147. [PMID: 39504664 DOI: 10.1016/j.jenvman.2024.123147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/22/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
Climate change, driven by excessive greenhouse gas (GHG) emissions from agricultural land, poses a serious threat to ecological security. It is now understood that significant differences exist in the responses of soil GHG emissions and soil carbon (C) sequestration to the application of different C-based materials (i.e., straw, organic manure (OM), and biochar). Therefore, elucidating the mechanisms by which differences in the properties of these materials affect soil GHG emissions is essential to comprehensively investigate the mechanisms through which variations in material properties influence soil GHG emissions. Herein, we conducted a field experiment to evaluate the responses of soil GHG emissions to cropland application of different C-based materials and employed molecular modeling calculations to explore the mechanisms by which differences in the properties of these materials affect soil GHG emissions. The results showed that biochar demonstrated superior resistance to biochemical decomposition and soil GHG adsorption capacity, leading to a significant reduction in soil GHG emissions due to its excellent physicochemical properties. The active surface properties of straw and OM enhanced their interaction with decomposing enzymes and accelerated their biochemical decomposition. Wheat-maize rotation with biochar application reduced CO2 emissions by 1089.8 kg CO2eq ha-1 and increased soil organic carbon by 141.8% compared to the control after one year. Collectively, these results contribute to the optimization of cropland application strategies for crop residues to balance soil C sequestration and soil GHG emissions, and to ensure sustainable agriculture and ecological security.
Collapse
Affiliation(s)
- Debo He
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Ma
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongni Hu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoguo Wang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Zhixin Dong
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Bo Zhu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China; Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
3
|
Chen B, Guo L, Tang J, Li Y, Li C. Comprehensive impacts of different integrated rice-animal co-culture systems on rice yield, nitrogen fertilizer partial factor productivity and nitrogen losses: A global meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169994. [PMID: 38232823 DOI: 10.1016/j.scitotenv.2024.169994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/28/2023] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
Integrated rice-animal co-culture (IRAC) is an ecological agricultural system combining rice cultivation with animal farming, which holds significant implications for food security and agriculture sustainable development. However, the comprehensive impacts of the co-culture on rice yield, nitrogen (N) losses, and N fertilizer partial factor productivity (NPFP) remain elusive and may vary under different environmental conditions and N management. Here, we conducted a meta-analysis of data from various IRAC systems on a global scale, including 371, 298, and 115 sets of data for rice yield, NPFP, and N losses, respectively. The results showed that IRAC could significantly increase rice yield (by 3.47 %) and NPFP (by 4.26 %), and reduce N2O emissions (by 16.69 %), NH3 volatilization (by 11.03 %), N runoff (by 17.72 %), and N leaching (by 19.10 %). Furthermore, there were significant differences in rice yield, NPFP, and N loss among different IRAC systems, which may be ascribed to variations in regional climate, soil variables, and N fertilizer management practices. The effect sizes of rice yield and NPFP were notably correlated with the rate and frequency of N application and the soil clay content. Moreover, a higher amount of precipitation corresponded to a larger effect size on rice NPFP. N2O emissions were closely associated with mean annual air temperature, annual precipitation, N application frequency, soil pH level, soil organic matter content, soil clay content, and soil bulk density. However, NH3 volatilization, N runoff, and N leaching exhibited no correlation with either the environmental conditions or the N management. Multivariate regression analysis further demonstrated that the soil clay content and N application rate are pivotal in predicting the effect sizes of rice yield, NPFP, and N2O emissions under IRAC. Specifically, IRAC with a low N application rate in soils with a high clay content could augment the effect size to increase rice NPFP and yield and reduce N2O emissions. In conclusion, IRAC offers a potent strategy to optimize rice yield and NPFP as well as mitigate N losses.
Collapse
Affiliation(s)
- Binpeng Chen
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River/College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Lijin Guo
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 3550002, PR China
| | - Jichao Tang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River/College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yanshi Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River/College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Chengfang Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River/College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
4
|
Zeng Q, Luo M, Qin L, Guo C, Liu J, Zhang T, Feng G, Li W. Effects of Hypoxia Stress on Survival, Antioxidant and Anaerobic Metabolic Enzymes, and Related Gene Expression of Red Swamp Crayfish Procambarus clarkii. BIOLOGY 2024; 13:33. [PMID: 38248464 PMCID: PMC10813390 DOI: 10.3390/biology13010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
The red swamp crayfish Procambarus clarkii is the most reared shrimp in China, but it is often affected by hypoxia stress in the process of seedling culture and adult crayfish culture. The oxygen consumption rate and asphyxiation point of juvenile crayfish (1.17 ± 0.03 g) and subadult crayfish (11.68 ± 0.11 g) at different temperatures (20, 22, 24, 26, and 28 °C) were studied. The survival, glycolysis, and expression of antioxidant genes were compared under 24 h acute hypoxia stress (1, 2, and 3 mg/L) and normal dissolved oxygen (7.5 mg/L). The results showed that the oxygen consumption rate and asphyxiation point of juvenile and subadult crayfish increased with increasing temperatures (20-28 °C). At the same temperature, the oxygen consumption rate and asphyxiation point of juvenile crayfish were significantly higher than those of subadult crayfish (p < 0.05). Within 24 h, the three hypoxia stress environments did not lead to the death of crayfish, indicating that P. clarkii has a strong ability to adapt to hypoxia. Hypoxia stress significantly affected the activities of antioxidant and anaerobic metabolic enzymes and gene expression in juvenile and subadult crayfish. The activities of the superoxide dismutase (SOD), catalase (CAT), and lactate dehydrogenase (LDH) and the content of lactic acid (LD) in the hepatopancreas of juvenile and subadult crayfish in the hypoxia stress groups increased significantly. The expression levels of SOD mRNA, CAT mRNA, Hsp70 mRNA, and crustin 4 mRNA in the hepatopancreas of juvenile and subadult crayfish in the hypoxia stress groups were significantly higher than those in the control group (p < 0.05), and the higher the degree of hypoxia stress, the higher the expression of each gene. The results showed that the antioxidant system of juvenile crayfish was more sensitive to hypoxia environments, and hypoxia stress resulted in increased stress levels in juvenile crayfish and subadult crayfish.
Collapse
Affiliation(s)
- Qinghui Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.Z.); (L.Q.); (C.G.); (J.L.); (T.Z.)
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China;
| | - Mingzhong Luo
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, China;
| | - Lirong Qin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.Z.); (L.Q.); (C.G.); (J.L.); (T.Z.)
| | - Chao Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.Z.); (L.Q.); (C.G.); (J.L.); (T.Z.)
| | - Jiashou Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.Z.); (L.Q.); (C.G.); (J.L.); (T.Z.)
| | - Tanglin Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.Z.); (L.Q.); (C.G.); (J.L.); (T.Z.)
| | - Guangpeng Feng
- Jiangxi Institute for Fisheries Sciences, Poyang Lake Fisheries Research Centre of Jiangxi Province, Nanchang 330039, China;
| | - Wei Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (Q.Z.); (L.Q.); (C.G.); (J.L.); (T.Z.)
| |
Collapse
|
5
|
Xu Q, Dai L, Zhou Y, Dou Z, Gao W, Yuan X, Gao H, Zhang H. Effect of nitrogen application on greenhouse gas emissions and nitrogen uptake by plants in integrated rice-crayfish farming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167629. [PMID: 37838042 DOI: 10.1016/j.scitotenv.2023.167629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/16/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
Integrated rice-crayfish farming is an ecological rice farming mode. However, limited research has examined the comprehensive impacts of greenhouse gas (GHG) emissions, nitrogen (N) uptake, and N utilization in rice under this farming modality. Herein, a dual-factor experiment was performed from 2021 to 2022 to assess the comprehensive impacts of N application and rice farming mode on greenhouse gas (GHG) emissions, N uptake, N utilization, and rice yield in paddy fields. Under N application, the rice-crayfish co-culture exhibits a 2.3 % decrease in global warming potential (GWP) and a 17.3 % increase in greenhouse gas intensity relative to the rice monoculture. Moreover, the N uptake of rice within the rice-crayfish co-culture is 5.2 %-10.4 % higher than that in the rice monoculture. However, owing to low rice yield under the rice-crayfish co-culture, its N partial factor productivity decreases by 5.6 %-22.6 %, while N agronomic efficiency is reduced by 18.3 %-46.9 % compared with the rice monoculture. In addition, N application significantly inhibits CH4 emissions from paddy fields in the rice-crayfish co-culture mode. Compared with no N application, the CH4 emissions and GWP of N-applied treatment are decreased by 12.1 %-31.0 % and 6.0 %-15.8 %, respectively. Hence, N regulation might reduce GHG emissions in rice-aquatic animal co-culturing agriculture. Collectively, the results of this study suggest that switching from a rice monoculture to rice-crayfish co-culture can mitigate GHG emissions and promote rice N uptake; however, continuously improving the productivity of co-culturing agriculture is key to achieving high N utilization efficiency and low environmental impact.
Collapse
Affiliation(s)
- Qiang Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Linxiu Dai
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Ying Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Zhi Dou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| | - Weiyan Gao
- Jiangsu Xuyi Crayfish Industry Development Co., Ltd, Huai'an 211700, China
| | - Xiaochun Yuan
- Jiangsu Xuyi Crayfish Industry Development Co., Ltd, Huai'an 211700, China
| | - Hui Gao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China.
| | - Hongcheng Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Research Institute of Rice Industrial Engineering Technology of Yangzhou University, Yangzhou 225009, China
| |
Collapse
|