1
|
Zhang S, Guo Y, Zhu S, Guo L, Pan X, Xu J, Dong F, Zheng Y, Wu X. From field to table: Reducing residual toxicity and risk of four pesticides via washing and blanching of cowpea (Vigna unguiculata (L.) Walp.). Food Chem 2025; 474:143082. [PMID: 39904083 DOI: 10.1016/j.foodchem.2025.143082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
The presence of acetamiprid, chlorantraniliprole, thiamethoxam, and cyromazine residues in cowpea raises significant health concerns. This study evaluated pesticide residues through field tests and examined the effects of washing, blanching, and frying on residue removal. Washing for 20-60 s reduced residues by 17.6 % to 67.3 %, while blanching for 1-5 min eliminated 42.5 % to 70.9 %. Conversely, frying increased residues of cyromazine, chlorantraniliprole, and acetamiprid (PF > 1). Notably, washing for 40 s followed by blanching for 2 min effectively removed residues. For cowpea samples exposed to high doses, this combination significantly lowered thiamethoxam, acetamiprid, and chlorantraniliprole levels below the maximum residue limit (MRL). Density functional theory and toxicity estimation software tool analyses indicate that this method also reduces toxicity by degrading parent compounds into less-toxic metabolites. Moreover, even with recommended practices, cyromazine residues exceeded MRLs, highlighting the need for reevaluation. The washing-blanching combination ensures the safety of cowpea consumption.
Collapse
Affiliation(s)
- Shuangwei Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Yajing Guo
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Shanshan Zhu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Linlin Guo
- Shanghai AB Sciex Analytical Instrument Trading Co, Ltd, Beijing 100015, PR China
| | - Xinglu Pan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Jun Xu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Fengshou Dong
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Yongquan Zheng
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Xiaohu Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, State Key Laboratory for Biology of Plant Diseases and Insect Pests; Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| |
Collapse
|
2
|
Bux N, Tumrani SH, Soomro RA, Ma Q, Zhou J, Wang T. Catalytic degradation of organic pollutants in aqueous systems: A comprehensive review of peroxyacetic acid-based advanced oxidation processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123989. [PMID: 39756279 DOI: 10.1016/j.jenvman.2024.123989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/12/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
Peroxyacetic acid (PAA)-based advanced oxidation processes (AOPs) have emerged as a promising treatment method to decontaminate organic pollutants. This review thoroughly evaluated the use of PAA-based AOPs, including their synthesis techniques, physicochemical features, and reaction pathways with pollutants. It also illustrated two primary channels: free radical pathways and non-radical pathways during the PAA activation processes and introduced various methods for activating PAA, including energy radiation, transition metal catalysis, and carbon catalysis. Additionally, this review comprehensively presented the advancements in research on PAA-based AOPs for wastewater treatment. Furthermore, the influences of key parameters on system performance, such as pH, catalyst loading, PAA dosage, and interfering species, were summarized. By critically evaluating mechanisms, performance, and prospects, this review served as a valuable resource for researchers and practitioners involved in the development and implementation of PAA-based AOPs for sustainable water remediation.
Collapse
Affiliation(s)
- Nabi Bux
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Sadam Hussain Tumrani
- Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China; The Key Laboratory of Water and Sediment Science, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Razium Ali Soomro
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Qiuling Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China.
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
3
|
Gao W, Wang Y, Lu F, Liu F. Ultrasound-Assisted Enzymatic Extraction of Polysaccharides from Tricholoma matsutake: Optimization, Structural Characterization, and Inhibition of α-Synuclein Aggregation. Foods 2024; 13:4150. [PMID: 39767092 PMCID: PMC11675543 DOI: 10.3390/foods13244150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
This study optimized ultrasound-assisted enzymatic (UAE) extraction of TMP (Tricholoma matsutake polysaccharide) through response surface methodology. The optimal conditions included complex enzyme comprising 1.15% cellulase, 0.60% pectinase, and 0.95% dispase, with ultrasound for 24 min at 84.5 °C and enzyme hydrolysis at pH 5.0. This process yielded 19.74 ± 0.51% TMP, exceeding traditional hot water extraction by over four times. Fourier transform infrared spectroscopy (FT-IR) confirmed that UAE did not alter the structure of TMP. In vitro experiments indicated that TMP-UAE demonstrated enhanced antioxidant properties. Further purification through DEAE-52 and Sephadex G-100 chromatography resulted in a homogenous polysaccharide fraction (TMP). Characterization indicated that TMP has an average molecular weight of 2.79 × 104 Da, composed of fucose, galactose, glucose and mannose in a 2.00:9.44:86.29:2.28 molar ratio. FT-IR indicated the presence of C-O-C glycosidic bonds and pyranyl-type sugar rings. Scanning electron microscopy displayed loose lamellar structures with small pores. Finally, TMP exhibited therapeutic potential against C. elegans in Parkinson's disease, including reducing α-synuclein aggregation, protecting dopaminergic neurons, and prolonging lifespan. This study provides an efficient extraction method for TMP and an insight into its neuroprotective effect in PD C.elegans.
Collapse
Affiliation(s)
| | | | | | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (W.G.); (Y.W.); (F.L.)
| |
Collapse
|
4
|
Bi Z, Wang W, Zhao L, Wang X, Xing D, Zhou Y, Lee DJ, Ren N, Chen C. The generation and transformation mechanisms of reactive oxygen species in the environment and their implications for pollution control processes: A review. ENVIRONMENTAL RESEARCH 2024; 260:119592. [PMID: 39002629 DOI: 10.1016/j.envres.2024.119592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Reactive oxygen species (ROS), substances with strong activity generated by oxygen during electron transfer, play a significant role in the decomposition of organic matter in various environmental settings, including soil, water and atmosphere. Although ROS has a short lifespan (ranging from a few nanoseconds to a few days), it continuously generated during the interaction between microorganisms and their environment, especially in environments characterized by strong ultraviolet radiation, fluctuating oxygen concentration or redox conditions, and the abundance of metal minerals. A comprehensive understanding of the fate of ROS in nature can provide new ideas for pollutant degradation and is of great significance for the development of green degradation technologies for organic pollutants. At present, the review of ROS generally revolves around various advanced oxidation processes, but lacks a description and summary of the fate of ROS in nature, this article starts with the definition of reactive oxidants species and reviews the production, migration, and transformation mechanisms of ROS in soil, water and atmospheric environments, focusing on recent developments. In addition, the stimulating effects of ROS on organisms were reviewed. Conclusively, the article summarizes the classic processes, possible improvements, and future directions for ROS-mediated degradation of pollutants. This review offers suggestions for future research directions in this field and provides the possible ROS technology application in pollutants treatment.
Collapse
Affiliation(s)
- Zhihao Bi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China.
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Xueting Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Yanfeng Zhou
- Heilongjiang Agricultural Engineering Vocational College, Harbin, Heilongjiang Province, 150070, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li, 32003, Taiwan
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China; Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China.
| |
Collapse
|
5
|
Zhang X, Zhang X, Li H, Ao X, Sun W, Li Z. Reactive Oxygen Species Generated in Situ During Carbamazepine Photodegradation at 222 nm Far-UVC: Unexpected Role of H 2O Molecules. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19070-19079. [PMID: 39382092 DOI: 10.1021/acs.est.4c07256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
When 222 nm far-UVC is used to drive AOPs, photolysis emerges as a critical pathway for the degradation of numerous organic micropollutants (OMPs). However, the photodegradation mechanisms of the asymmetrically polarized OMPs at 222 nm remain unclear, potentially posing a knowledge barrier to the applications of far-UVC. This study selected carbamazepine (CBZ), a prevalent aquatic antiepileptic drug that degrades negligibly at 254 nm, to investigate its photodegradation mechanisms at 222 nm. Accelerated CBZ treatment by 222 nm far-UVC was mainly attributed to in situ ROS generation via self-sensitized photodegradation of CBZ. By quenching experiments and EPR tests, •OH radicals were identified as the major contributor to the CBZ photodegradation, whereas O2•- played a minor role. By deoxygenation and solvent exchange experiments, the H2O molecules were demonstrated to play a crucial role in deactivating the excited singlet state of CBZ (1CBZ*) at 222 nm: generating •OH radicals via electron transfer interactions with 1CBZ*. In addition, 1CBZ* could also undergo a photoionization process. The transformation products and pathways of CBZ at 222 nm were proposed, and the toxicities of CBZ's products were predicted. These findings provide valuable insights into OMPs' photolysis with 222 nm far-UVC, revealing more mechanistic details for far-UVC-driven systems.
Collapse
Affiliation(s)
- Xi Zhang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Xintong Zhang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Haoxin Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Xiuwei Ao
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China
| | - Zifu Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, International Science and Technology Cooperation Base for Environmental and Energy Technology of MOST, University of Science and Technology Beijing, Beijing 100083, PR China
| |
Collapse
|
6
|
Zhang H, Zhang Y, Zhang Y, Li H, Ou M, Yu Y, Zhang F, Yin H, Mao Z, Mei L. Catalytic activity of violet phosphorus-based nanosystems and the role of metabolites in tumor therapy. Nat Commun 2024; 15:6783. [PMID: 39117634 PMCID: PMC11310355 DOI: 10.1038/s41467-024-50769-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Although nanocatalytic medicine has demonstrated its advantages in tumor therapy, the outcomes heavily relie on substrate concentration and the metabolic pathways are still indistinct. We discover that violet phosphorus quantum dots (VPQDs) can catalyze the production of reactive oxygen species (ROS) without requiring external stimuli and the catalytic substrates are confirmed to be oxygen (O2) and hydrogen peroxide (H2O2) through the computational simulation and experiments. Considering the short of O2 and H2O2 at the tumor site, we utilize calcium peroxide (CaO2) to supply catalytic substrates for VPQDs and construct nanoparticles together with them, named VPCaNPs. VPCaNPs can induce oxidative stress in tumor cells, particularly characterized by a significant increase in hydroxyl radicals and superoxide radicals, which cause substantial damage to the structure and function of cells, ultimately leading to cell apoptosis. Intriguingly, O2 provided by CaO2 can degrade VPQDs slowly, and the degradation product, phosphate, as well as CaO2-generated calcium ions, can promote tumor calcification. Antitumor immune activation and less metastasis are also observed in VPCaNPs administrated animals. In conclusion, our study unveils the anti-tumor activity of VPQDs as catalysts for generating cytotoxic ROS and the degradation products can promote tumor calcification, providing a promising strategy for treating tumors.
Collapse
Affiliation(s)
- Hanjie Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, PR China
| | - Yitong Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, PR China
| | - Yushi Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, PR China
| | - Hanyue Li
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, PR China
| | - Meitong Ou
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, PR China
| | - Yongkang Yu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Fan Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, PR China
| | - Huijuan Yin
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, PR China
- Integrative regeneration laboratory, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, PR China
| | - Zhuo Mao
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, PR China.
| | - Lin Mei
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, PR China.
| |
Collapse
|
7
|
Jia D, Therias S, Voelker F, Kieffer J, Favero C, Mailhot G. Photochemical fate of nonionic polyacrylamide induced by hydroxyl radicals in the natural water: Mineralization mechanism exploration and half-life time evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174485. [PMID: 38972421 DOI: 10.1016/j.scitotenv.2024.174485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Water-soluble polyacrylamide (PAM) compounds have been used extensively in various sectors. The abundance of PAM in the environment raises concerns about its environmental impact. However, the mineralization of PAM in water under natural light irradiation remains insufficiently explored. This study utilizes nonionic PAM (nPAM) as a representative model to investigate both the mechanism and efficiency of nPAM degradation in water when exposed to ultraviolet (UV) light with hydrogen peroxide (H2O2) as the hydroxyl radical source. In the dark or with only UVA irradiation, negligible mineralization of nPAM occurred. In contrast, the presence of hydroxyl radicals (produced by the UVA/H2O2 system) produced 50 % nPAM mineralization over 7 days under our experimental conditions. The corresponding molecular weight (MW) of the nPAM was swiftly reduced from 1.58 ×106 Da to 1.59 ×103 Da in 3 days. Moreover, five carboxylic acids and nitrate ions were identified as the photodegradation intermediates of nPAM. The efficiencies of nPAM photodegradation by the UVA/H2O2 system in different natural waters and environmental conditions were assessed. The rate constant for the reaction between the hydroxyl radical and nPAM was 2.17 ×109 M-unit-1 s-1. The half-lives of nPAM in the sea and continental surface waters were determined to be several years and dozens of days, respectively. The application of UVB obviously accelerated the mineralization of nPAM in ultrapure water (71 % degradation in 7 days). Moreover, mineralization of concentrated nPAM (200 mg/L) in sea water was more efficient when both UVA- and UVB-activated H2O2 were used. Additionally, toxic acrylamide was not generated during nPAM photodegradation. Moreover, the photodegradation intermediates from nPAM were found to be neither acutely nor chronically toxic to aquatic organisms. This comprehensive study sheds light on the photochemical fate of nPAM in natural waters and provides essential insight for practical treatment of PAM in water systems.
Collapse
Affiliation(s)
- Daqing Jia
- Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France; SNF, SA, ZAC de milieux, 42160, Andrézieux-Bouthéon, France; National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Sandrine Therias
- Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | | | - Johann Kieffer
- SNF, SA, ZAC de milieux, 42160, Andrézieux-Bouthéon, France
| | - Cédrick Favero
- SNF, SA, ZAC de milieux, 42160, Andrézieux-Bouthéon, France
| | - Gilles Mailhot
- Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique, F-63000 Clermont-Ferrand, France
| |
Collapse
|
8
|
You J, Liu F, Wang Y, Duan C, Zhang L, Li H, Wang J, Xu H. Photo-methanification of aquatic dissolved organic matters with different origins under aerobic conditions: Non-negligible role of hydroxyl radicals. WATER RESEARCH 2024; 256:121609. [PMID: 38615601 DOI: 10.1016/j.watres.2024.121609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Lingering inconsistencies in the global methane (CH4) budget and ambiguity in CH4 sources and sinks triggered efforts to identify new CH4 formation pathways in natural ecosystems. Herein, we reported a novel mechanism of light-induced generation of hydroxyl radicals (•OH) that drove the production of CH4 from aquatic dissolved organic matters (DOMs) under ambient conditions. A total of five DOM samples with different origins were applied to examine their potential in photo-methanification production under aerobic conditions, presenting a wide range of CH4 production rates from 3.57 × 10-3 to 5.90 × 10-2 nmol CH4 mg-C-1 h-1. Experiments of •OH generator and scavenger indicated that the contribution of •OH to photo-methanificaiton among different DOM samples reached about 4∼42 %. In addition, Fourier transform infrared spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry showed that the carbohydrate- and lipid-like substances containing nitrogen-bonded methyl groups, methyl ester, acetyl groups, and ketones, were the potential precursors for light-induced CH4 production. Based on the experimental results and simulated calculations, the contribution of photo-methanification of aquatic DOMs to the diffusive CH4 flux across the water-air interface in a typical eutrophic shallow lake (e.g., Lake Chaohu) ranged from 0.1 % to 18.3 %. This study provides a new perspective on the pathways of CH4 formation in aquatic ecosystems and a deeper understanding on the sources and sinks of global CH4.
Collapse
Affiliation(s)
- Jikang You
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fei Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongwu Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chongsen Duan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lu Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Huishan Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Junjian Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Huacheng Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
9
|
Zhao HY, Liang ZH, Zhang K, Yin JN, Fu TT, Wang YN, OuYang HL, Wang Y. Nitrogen migration and transformation during re-suspension and photo-induction in landscape water replenished by reclaimed water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37376-37386. [PMID: 38771537 DOI: 10.1007/s11356-024-33672-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Sediment re-suspension plays a crucial role in releasing endogenous nitrogen and greenhouse gases in shallow urban waters. However, the impacts of repeated re-suspension and photo-induced processes on migration and transformation from endogenous nitrogen, as well as the emission of greenhouse gases, remain unclear. This study simulated three conditions: re-suspension (Rs), re-suspension combined with ultravioletirradiation (Rs + UV), and ultraviolet irradiation (UV). The findings revealed that both repeated sediment re-suspension and exposure to UV light altered the characteristics of surface sediments. Decrease of convertible nitrogen in sediments, leading to the release of ion-exchangeable nitrogen (IEF-N) into NH4+-N and NO3--N, influenced greenhouse gas production differently under various conditions. The study observed the highest concentration of dissolved N2O in under UV irradiation, positively correlated with NO2--N and NO3--N. Re-suspension increased the turbidity of the overlying water and accelerated nitrification, resulting in the highest NO3--N concentration and the lowest dissolved N2O concentration. Additionally, in the Rs + UV dissolved N2O maintained the higher concentrations than in Rs, with greatest amount of N conversion in surface sediments, and a 59.45% reduction in IEF-N. The production of N2O during re-suspension was mainly positively correlated with NH4+-N in the overlying water. Therefore, this study suggest that repeated re-suspension and light exposure significantly influence nitrogen migration and transformation processes in sediment, providing a theoretical explanation for the eutrophication of water and greenhouse gas emissions.
Collapse
Affiliation(s)
- Hui-Ying Zhao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Beilin District, Xi'an, Shaanxi, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Zhen-Hao Liang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Beilin District, Xi'an, Shaanxi, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Kai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Beilin District, Xi'an, Shaanxi, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Jia-Ni Yin
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Beilin District, Xi'an, Shaanxi, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Tian-Tian Fu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Beilin District, Xi'an, Shaanxi, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Yue-Ning Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Beilin District, Xi'an, Shaanxi, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Hui-Long OuYang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Beilin District, Xi'an, Shaanxi, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Yi Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Beilin District, Xi'an, Shaanxi, China.
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China.
| |
Collapse
|
10
|
Wen Q, Liu N, Qu R, Ge F. High salinity promotes the photoaging of polystyrene microplastics with humic acid in seawater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165741. [PMID: 37487889 DOI: 10.1016/j.scitotenv.2023.165741] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
The photoaging of microplastics (MPs) accumulated in the sea can be influenced by humic acid (HA). However, the role of salinity cannot be ignored, as it may potentially disrupt the interaction between MPs and HA, thereby altering the photoaging of MPs. Herein, this study investigated how salinity influences the effect of humic acid (HA, derived from lignite) on the photoaging of polystyrene microplastics (PS MPs) in artificial and natural seawater. The results revealed that HA promoted the photoaging of PS MPs under both low (5 PSU) and high salinity (35 PSU) in light conditions (L), reflected in the formation of fragments, the production of oxygen-containing functional groups (OH, CO, and OCO), and the increase in hydrophilicity of PS MPs. Furthermore, high salinity promoted the photoaging of PS MPs with HA more significantly, as evidenced by the similar indicators and the order of oxygen/carbon atom ratio (O/C): L-HA-High (0.15) > L-HA-Low (0.10) > Unaged (0.02). Interestingly, due to the reduction of electrostatic repulsion, the adsorption of HA on photoaged PS MPs in natural and artificial high salinity seawater was 1.77 mg/g and 0.39 mg/g, respectively, which was significantly higher than those PS MPs photoaged in the low salinity seawater. Furthermore, the electron spin resonance (ESR) results confirmed that more hydroxyl radicals (OH) were generated after adsorbing HA under high salinity conditions, thus promoting the fragmentation and oxidation of PS MPs. Overall, our findings highlight the crucial role of salinity in influencing the photoaging of MPs with HA and help to assess the marine risk of MPs accurately.
Collapse
Affiliation(s)
- Qiong Wen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Na Liu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Ruohua Qu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Fei Ge
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan 411105, China.
| |
Collapse
|
11
|
Liu Q, Niu X, Zhang D, Ye X, Tan P, Shu T, Lin Z. Phototransformation of phosphite induced by zinc oxide nanoparticles (ZnO NPs) in aquatic environments. WATER RESEARCH 2023; 245:120571. [PMID: 37683523 DOI: 10.1016/j.watres.2023.120571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/16/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Phosphite, an essential component in the biogeochemical phosphorus cycle, may make significant contributions to the bioavailable phosphorus pool as well as water eutrophication. However, to date, the potential impacts of coexisting photochemically active substances on the environmental fate and transformation of phosphite in aquatic environments have been sparsely elucidated. In the present study, the effect of zinc oxide nanoparticles (ZnO NPs), a widely distributed photocatalyst in aquatic environments, on phosphite phototransformation under simulated solar irradiation was systematically investigated. The physicochemical characteristics of the pristine and reacted ZnO NPs were thoroughly characterized. The results showed that the presence of ZnO NPs induced the indirect phototransformation of phosphite to phosphate, and the reaction rate increased with increasing ZnO NPs concentration. Through experiments with quenching and trapping free radicals, it was proved that photogenerated reactive oxygen species (ROS), such as hydroxyl radical (•OH), superoxide anion (O2•-), and singlet oxygen (1O2), made substantial contributions to phosphite phototransformation. In addition, the influencing factors such as initial phosphite concentration, pH, water matrixes (Cl-, F-, Br-, SO42-, NO3-, NO2-, HCO3-, humic acid (HA) and citric acid (CA)) were investigated. The component of generated precipitates after the phosphite phototransformation induced by ZnO NPs was still dominated by ZnO NPs, while the presence of amorphous Zn3(PO4)2 was identified. This work explored ZnO NPs-mediated phosphite phototransformation processes, indicating that nanophotocatalysts released into aquatic environments such as ZnO NPs may function as photosensitizers to play a beneficial role in the transformation of phosphite to phosphate, thereby potentially mitigating the toxicity of phosphite to aquatic organisms while exacerbating eutrophication. The findings of this study provide a novel insight into the comprehensive assessment of the environmental fate, potential ecological risk, and biogeochemical behaviors of phosphite in natural aquatic environments under the condition of combined pollution.
Collapse
Affiliation(s)
- Qiang Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China
| | - Xiaojun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China.
| | - Dongqing Zhang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China.
| | - Xingyao Ye
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Peibing Tan
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China
| | - Ting Shu
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China
| | - Zhang Lin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
12
|
Zhang Y, Yu W, Wang J, Zhan T, Kamran MA, Wang K, Zhu X, Chu C, Zhu X, Chen B. Long-Term Exposure of Graphene Oxide Suspension to Air Leading to Spontaneous Radical-Driven Degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14407-14416. [PMID: 37695219 DOI: 10.1021/acs.est.3c05788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Understanding the environmental transformation and fate of graphene oxide (GO) is critical to estimate its engineering applications and ecological risks. While there have been numerous investigations on the physicochemical stability of GO in prolonged air-exposed solution, the potential generation of reactive radicals and their impact on the structure of GO remain unexplored. In this study, using liquid-PeakForce-mode atomic force microscopy and quadrupole time-of-flight mass spectroscopy, we report that prolonged exposure of GO to the solution leads to the generation of nanopores in the 2D network and may even cause the disintegration of its bulk structure into fragment molecules. These fragments can assemble themselves into films with the same height as the GO at the interface. Further mediated electrochemical analysis supports that the electron-donating active components of GO facilitate the conversion of O2 to •O2- radicals on the GO surface, which are subsequently converted to H2O2, ultimately leading to the formation of •OH. We experimentally confirmed that attacks from •OH radicals can break down the C-C bond network of GO, resulting in the degradation of GO into small fragment molecules. Our findings suggest that GO can exhibit chemical instability when released into aqueous solutions for prolonged periods of time, undergoing transformation into fragment molecules through self-generated •OH radicals. This finding not only sheds light on the distinctive fate of GO-based nanomaterials but also offers a guideline for their engineering applications as advanced materials.
Collapse
Affiliation(s)
- Yuyao Zhang
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
- Department of Chemical & Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, Connecticut 06511, United States
| | - Wentao Yu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Jian Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Tingjie Zhan
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey 08854, United States
| | - Muhammad Aqeel Kamran
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Kun Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Xiangyu Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| |
Collapse
|
13
|
Javanroudi SR, Fattahi N, sharafi K, Arfaeinia H, Moradi M. Chalcopyrite as an oxidants activator for organic pollutant remediation: A review of mechanisms, parameters, and future perspectives. Heliyon 2023; 9:e19992. [PMID: 37809581 PMCID: PMC10559683 DOI: 10.1016/j.heliyon.2023.e19992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Advanced oxidation processes (AOPs) based on oxidants have attracted attention for the degradation of organic pollutants. The combination of chalcopyrite with oxidants such as persulfate, peroxide, percarbonate, and others shows promise as a system due to its ability to activate through various pathways, leading to the formation of numerous radical and non-radical species. In this review, the generation of sulfate radical (SR) and hydroxyl radical (HR) in AOPs were summarized. The significance of chalcopyrite in various approaches including Fenton, photo-Fenton, and photo/Fenton-like methods, as well as its involvement in electrochemical Fenton-based processes was discussed. The stability and reusability, toxicity, catalyst mechanism, and effects of operational parameters (pH, catalyst dosage, and oxidant concentration) are evaluated in detail. The review also discusses the role of Fe2+/3+, Cu1+/2+, S2- and Sn2- present in CuFeS2 in the generation of free radicals. Finally, guidelines for future research are presented in terms of future perspectives.
Collapse
Affiliation(s)
- Setareh Rostami- Javanroudi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nazir Fattahi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kiomars sharafi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Environmental Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Arfaeinia
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Masoud Moradi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|