1
|
Peng L, Rahman Z, Tian Y, Yin T, Xiong S, You J, Liu R, Wang L, Huang Q, Ma H. Comprehensive molecular biology and metabolomics analysis reveal the changes on muscle quality of Megalobrama amblycephala exposure to ammonia nitrogen during transportation. Food Res Int 2025; 212:116372. [PMID: 40382029 DOI: 10.1016/j.foodres.2025.116372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/23/2025] [Accepted: 04/15/2025] [Indexed: 05/20/2025]
Abstract
This study comprehensively investigated the effects of different ammonia nitrogen models during transportation on the energy metabolism, redox system, apoptosis, and changes in muscle quality of fish using molecular biology and metabolomics. Exposure to ammonia nitrogen caused intensive stress response as evidenced by alteration on the levels of biochemical indicators (cortisol, glucose, urea nitrogen, alanine transaminase, lactic dehydrogenase, superoxide dismutase, and glutathione peroxidase) and structural disruption of organs (including gill, cephalic kidney, kidney, and liver). As a result of the ammonia nitrogen stress, the redox system became imbalance, leading to disturbance in energy metabolism primarily through the pathways of D-amino acid metabolism, alanine/aspartate/glutamate metabolism, and purine metabolism. Additionally, apoptosis occurred following stress, regulated by FoxO, mTOR, NF-κB, and PI3K/AKT signaling pathways. Besides redox system, energy metabolism, and apoptosis, the change of muscle quality were also influenced by ammonia nitrogen concentration and exposure duration. Drip loss increased with higher ammonia nitrogen concentrations and longer exposure time, while shear force value showed an inverse trend. Although no significant changes were observed in a* and b* values following ammonia nitrogen exposure, the highest W and L* values were found in the low-concentration groups. The correlation of spearman indicates the changes in muscle quality, including drip loss, shear force, and color, induced by ammonia nitrogen during transportation was attributed to the interplay of redox system, energy metabolism, and apoptosis.
Collapse
Affiliation(s)
- Ling Peng
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ziaur Rahman
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yuanyong Tian
- College of Food Science and Engineering, Dalian Ocean University 116023, PR China
| | - Tao Yin
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Shanbai Xiong
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Juan You
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ru Liu
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Lan Wang
- Institute of Agricultural Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, PR China
| | - Qilin Huang
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Huawei Ma
- Engineering Research Center of Processing & Storage of Characteristic and Advantage Aquatic Products from Guangxi, Guangxi Academy of Fishery Science, Nanning 530021, Guangxi, China
| |
Collapse
|
2
|
Li C, Qiu Y, Luo L, Zhou X, Liu H, Ouyang P, Geng Y, Chen D, Huang X. Study on the correlation between Flavobacterium columnare infection and gill injury in Largemouth bass (Micropterus salmoides) and the protective effect of Enoxolone. FISH & SHELLFISH IMMUNOLOGY 2025; 163:110388. [PMID: 40318709 DOI: 10.1016/j.fsi.2025.110388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Columnaris disease, caused by Flavobacterium columnare, has a broad host range and can afflict multiple families and genera of freshwater fish. In addition, our prior research found that Enoxolone emerged as the most promising candidate with a low minimum inhibitory concentration and good cost-effectiveness. However, the therapeutic effect of Enoxolone on Micropterus salmoides infected with F. columnare remains unclear, and its antibacterial efficiency in vivo has yet to be investigated. In this study, we found that the cumulative mortality rate of M. salmoides reached 70 % within 96 h post-infection with 1 × 108 CFU/mL F. columnare, and the gills exhibited clinical signs such as paleness and ischemia, accompanied by characteristic "Clavate Gill" pathological changes. Meanwhile, both the severity of these lesions and the bacterial load showed a significantly upward trend over time. In addition, following Enoxolone treatment, the mortality rate of M. salmoides infected by F. columnare was reduced by 40 %, with alleviated general pathological changes and a significantly lower number of apoptotic positive cells compared to the infected but untreated group. The relative expression of apoptosis and inflammation-related genes showed that the expression levels of Caspase-9, IL-18, TNF-α and NF-κB were significantly upregulated after F. columnare infection. However, the relative expression of Bcl-2 and IL-10 was significantly upregulated after treatment with Enoxolone. In conclusion, there was a positive correlation between the F. columnare load and gill damage in M. salmoides. In addition, Enoxolone has potential therapeutic and protective effects against gill tissue damage caused by F. columnare. Presumably, this efficacy may stem from the drug's ability to inhibit bacteria, thereby reducing gill cell apoptosis and inflammation. These findings provide new perspectives for future research and establish a groundwork for devising preventive and curative strategies against F. columnare infections.
Collapse
Affiliation(s)
- Chen Li
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yunshan Qiu
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lin Luo
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xinnan Zhou
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hongli Liu
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
3
|
Zhang Y, Qiao H, Peng L, Meng Y, Song G, Luo C, Long Y. Influence of High Temperature and Ammonia and Nitrite Accumulation on the Physiological, Structural, and Genetic Aspects of the Biology of Largemouth Bass ( Micropterus salmoides). Antioxidants (Basel) 2025; 14:495. [PMID: 40298879 PMCID: PMC12024417 DOI: 10.3390/antiox14040495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 04/30/2025] Open
Abstract
Hyperthermia and nitrogenous pollutants like ammonia and nitrite are common risk factors that adversely affect fish health and pose significant threats to the aquaculture industry. However, the impacts of high temperatures on the accumulation of nitrogenous pollutants in the water of the aquaculture systems and their toxicity to farmed fish are not well understood. In this study, juvenile largemouth bass (Micropterus salmoides, LMB) were kept at 28 °C and 34 °C in a closed aquatic system to investigate the effects of higher temperatures on ammonia and nitrite accumulation. The fish were fed 2% of their body weight daily for a 14-day experiment. Ammonia levels gradually increased, peaking on day 7 at 34 °C and on day 9 at 28 °C, then decreased to near zero. Nitrite levels remained low initially and increased rapidly along with the reduction in ammonia levels at both temperatures. The 34 °C high temperature accelerated the accumulation of ammonia and its transformation into nitrite compared to 28 °C. Fish were sampled on day 1 (low ammonia and low nitrite, LALN), day 8 (high ammonia and low nitrite, HALN), and day 14 (low ammonia and high nitrite, LAHN) to explore toxic effects. Successive exposure to high levels of ammonia and nitrite caused oxidative stress in the liver and significant pathogenic changes in the liver and spleen, with more pronounced impacts observed at 34 °C. Significant changes in gene expression were detected in the liver and spleen of fish sampled at HALN and LAHN, compared to those at LALN, with upregulated genes primarily associated with extracellular matrix (ECM) and cytoskeleton organization. A second experiment was conducted at the same temperatures but without ammonia/nitrite accumulation. The results of this experiment confirmed the combined effects of hyperthermia and ammonia/nitrite toxicity on the expression of genes involved in ECM-receptor interaction and TGF-beta signaling. These findings are valuable for optimizing cultivation environments and promoting the health of farmed LMB.
Collapse
Affiliation(s)
- Yuexing Zhang
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China; (Y.Z.); (H.Q.)
| | - Hui Qiao
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China; (Y.Z.); (H.Q.)
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (L.P.); (Y.M.); (G.S.)
| | - Leyang Peng
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (L.P.); (Y.M.); (G.S.)
| | - Yujie Meng
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (L.P.); (Y.M.); (G.S.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guili Song
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (L.P.); (Y.M.); (G.S.)
| | - Cheng Luo
- Xiaogan Academy of Agricultural Sciences, Xiaogan 432100, China;
| | - Yong Long
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (L.P.); (Y.M.); (G.S.)
| |
Collapse
|
4
|
Bjørgen H, Koppang EO, Nowak BF. Gill Health in Fish Farmed in Recirculating Aquaculture Systems (RAS): A Review. JOURNAL OF FISH DISEASES 2025; 48:e14057. [PMID: 39648983 DOI: 10.1111/jfd.14057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/07/2024] [Accepted: 11/21/2024] [Indexed: 12/10/2024]
Abstract
Recirculating Aquaculture Systems (RAS) have been proposed as the future of aquaculture, because they can be used anywhere regardless of access to water, they offer high level of control over farming environment, including biosecurity, and are considered to be sustainable. However, despite of continuous development, there can be still issues with water quality affecting gill health of fish farmed in these systems. This review provides an overview of fish gill structure and gill immune response, and discusses the known impacts of RAS on gill health. Several experimental studies have inadequately reported conditions, particularly water quality, making it difficult to determine if the observed effects were due to water quality issues or RAS system itself. It is crucial for studies investigating the impact of RAS on fish to report water quality during the study. Furthermore, assessments of RAS effects on gill health should include sufficient independent replicates and flow through controls using a common water source. Various methods have been used to assess gill health in RAS, including gill histology, presence of pathogens, gene expression in the gills and gill microbiome analysis. Differences in gill health in fish from RAS and a flow through system have been shown for a number of freshwater and marine fish species. However, these results have been inconsistent across studies, and some results have been challenging to interpret as indicators of gill health. Holistic studies including a number of different methods to assess fish gills would give more conclusive results. More research is needed, in particular, on brackish and marine RAS, to fully understand their impacts on gill health.
Collapse
Affiliation(s)
- Håvard Bjørgen
- Unit of Anatomy, Veterinary Faculty, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Erling Olaf Koppang
- Unit of Anatomy, Veterinary Faculty, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Barbara F Nowak
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
5
|
Fu Q, Yang J, Jiang H, Ren Y, Huo L, Liu M. Pulsed Red Photobiomodulation Boosts the Inhibition of Oxytocin-Induced Primary Dysmenorrhea in Mice by Suppressing Oxidative Stress and Inflammation. JOURNAL OF BIOPHOTONICS 2025; 18:e202400398. [PMID: 39676335 DOI: 10.1002/jbio.202400398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/01/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024]
Abstract
Increasing evidence has underscored the pivotal role of red photobiomodulation (R-PBM) in analgesic and anti-inflammatory processes; nonetheless, research concerning the effects of pulsed wave on primary dysmenorrhea (PD) remains sparse. This study found that pulsed R-PBM significantly diminished pain responses and levels of PGF2α/PGE2, mitigated uterine swelling, augmented antioxidant capacity, and lowered MDA concentrations, which outperformed continuous wave at the same average irradiance. Furthermore, PW treatment substantially reduced ROS levels and enhanced cell viability in PGF2α induced HUSM cells. NOS levels, especially iNOS, were markedly diminished in the uteri of PD mice, accompanied by significant alterations in inflammation-related genes (Jun, Fos, IL1rn, IL17b) and protein levels, along with pronounced downregulation of calcium ion concentrations after pulsed R-PBM intervention. These findings indicated that pulsed R-PBM may mitigate pain by modulating ROS and NO/NOS, mediated oxidative stress and inflammatory responses. Consequently, pulsed R-PBM emerges as a promising therapeutic strategy for PD.
Collapse
Affiliation(s)
- Qiqi Fu
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Jiali Yang
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Hui Jiang
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Yi Ren
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Longfei Huo
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, China
| |
Collapse
|
6
|
Tong R, Jing F, Li Y, Pan L, Yu X, Zhang N, Liao Q. Mechanisms of intestinal DNA damage and inflammation induced by ammonia nitrogen exposure in Litopenaeus vannamei. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110070. [PMID: 39522856 DOI: 10.1016/j.cbpc.2024.110070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/11/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Ammonia nitrogen, a common aquaculture pollutant, harms crustaceans by causing intestinal inflammation, though its exact mechanisms are unclear. Thus, we exposed shrimp to 0, 2, 10 and 20 mg/L NH4Cl exposure for 0, 3, 6, 12, 24, 48, 72 h, and explored the intestinal stress, apoptosis, proliferation, inflammation and its histopathological changes. This research indicated that ammonia nitrogen exposure heightens plasma dopamine (DA), 5-hydroxytryptamine (5-HT), norepinephrine (NE), and acetylcholine (ACh) levels, alters gene expression of neurotransmitter receptors in the intestine, triggering the PLCCa2+ pathway and induces endoplasmic reticulum stress. Additionally, mitochondrial fission-related genes (Drp1, FIS1) significantly increase, the level of reactive oxygen species (ROS) was significantly elevated in the intestine, which induced DNA damage effects and initiated the DNA repair function, mainly through the base excision repair pathway, but with a low repair efficiency. By determining the expression of key genes of caspase-dependent and non-caspase-dependent apoptotic pathways, it was found that ammonia nitrogen exposure induced apoptosis in intestinal cells, proliferation key signaling pathways such as Wnt, EGFR and FOXO signaling showed an overall decrease after ammonia nitrogen exposure, combined with the gene expression of cell cycle proteins and proliferation markers, indicated that the proliferation of intestinal cells was inhibited. Performing pearson correlation analysis of intestinal cell damage, proliferation, and inflammatory factors, we hypothesized that ammonia nitrogen exposure induces intestinal endoplasmic reticulum stress and mitochondrial fission, induces elevated ROS, leads to DNA damage, and causes inflammation and damage in intestinal tissues by the underlying mechanism of promoting apoptosis and inhibiting proliferation.
Collapse
Affiliation(s)
- Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Futao Jing
- Shandong Fisheries Development and Resources Conservation Center, Jinan 250013, China
| | - Yaobing Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Xin Yu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Ning Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Qilong Liao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
7
|
Fu Q, Jiang H, Yang J, Qin H, Huo L, Ren Y, Lin S, Liu M, Yao J. The synergistic effect of pulsed red light and leonurus inhibits primary dysmenorrhea induced by oxytocin in mice by modulating calcium signaling and inhibiting inflammatory responses. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 262:113079. [PMID: 39662253 DOI: 10.1016/j.jphotobiol.2024.113079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Despite increasing evidence suggesting that red light photobiomodulation (R-PBM) and leonurus play important roles in analgesic and anti-inflammatory processes, data on their combined effect on primary dysmenorrhea (PD) are scarce. In this study, we reported the pain assessment of red light at various modes combined with leonurus on the oxytocin-induced model of PD mice. The combined intervention of pulsed R-PBM and leonurus decreased pain responses and PGF2α/PGE2 levels, alleviated uterine swelling and inflammatory infiltration, enhanced antioxidant levels (T-AOC, GSH-PX, SOD), and reduced lipid peroxidation (MDA, LPO) in the uterus, with its synergistic effect surpassing either treatment alone or the combination of continuous wave R-PBM with leonurus. Transcriptomic analysis demonstrated significant changes in differentially expressed genes associated with calcium signaling (Cav1, Cacna1c, Kcnmb1, Cnn1, and Myh11) and inflammatory response (Ptgs2, Jun, Fos, IL1rn, and IL17b) in the combination group, with concurrent downregulation of MLCK, COX-2, p-JNK/JNK, and IL17b protein levels, and upregulation of IL1rn, suggesting that the combined intervention of pulsed R-PBM and leonurus may alleviate pain through disruption of calcium homeostasis and induction of ROS-mediated inflammatory responses. Metabolomics studies of plasma revealed significant changes in lipid metabolism after the combined intervention, consistent with the transcriptomic findings. Hence, pulsed R-PBM combined leonurus has the potential to be an effective therapeutic approach for PD, as well as an alternative option for painful and inflammatory diseases; however, further exploration of its underlying mechanism is still necessary.
Collapse
Affiliation(s)
- Qiqi Fu
- School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Hui Jiang
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Jiali Yang
- School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Haokuan Qin
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Longfei Huo
- School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Yi Ren
- School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Shangfei Lin
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China; College of Physics and Optoelectronic Engineering, Foshan University, Guangdong Province 528231, China.
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, Shanghai 200433, China; Zhongshan Fudan Joint Innovation Center, Zhongshan 528400, Guangdong Province, China.
| | - Jinghui Yao
- Department of Pediatric Orthopedic, Center for Orthopedic Surgery, The Third School of Clinical Medicine, The Third Affiliated Hospital of Southern Medical University; Guangzhou 510515, Guangdong Province, China.
| |
Collapse
|
8
|
Ma Y, Liu Y, Sun J, Min P, Liu W, Li L, Yi P, Guo R, Chen J. Ecological risks of high-ammonia environment with inhibited growth of Daphnia magna: Disturbed energy metabolism and oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174959. [PMID: 39059654 DOI: 10.1016/j.scitotenv.2024.174959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
High ammonia pollution is a common problem in water bodies. However, research on the mechanisms underlying the toxic effects on organisms at different nutritional levels is still insufficient. Herein, based on the environmental concentration, the toxic effects of high ammonia pollution on Daphnia magna were investigated. Overall, the feeding and filtration rates of D. magna were significantly decreased by ammonia. Growth inhibition of D. magna by ammonia was confirmed by the decreased body length. After ammonia exposure, the metabolic status of D. magna changed, the correlation network weakened, and the correlations between metabolites were disrupted. Changes occurred in metabolites primarily involved in oxidative stress, fatty acid oxidation, tricarboxylic acid cycle, and protein digestion, absorption, and synthesis, which were validated through alterations in multiple biomarkers. In addition, mitochondrial function was evaluated and was found to inhibit mitochondrial activity, which was accompanied by a decreased marker of mitochondrial activity contents and ATPase activity. Thus, the results suggested that energy metabolism and oxidative stress were involved in ammonia-induced growth toxicity. This study provides new insights into the impact of ammonia on aquatic ecological health.
Collapse
Affiliation(s)
- Yunfeng Ma
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yanhua Liu
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Jiawei Sun
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Peng Min
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Liu
- State Key Laboratory for Environmental Protection of Water Ecological Health in the Middle and Lower Reaches of the Yangtze River, Jiangsu Provincial Academy of Environmental Science, Nanjing 210036, China
| | - Lei Li
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Pan Yi
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Ruixin Guo
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Jianqiu Chen
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
9
|
Liu H, Yuan S, Zheng K, Liu G, Li J, Ye B, Yin L, Li Y. IL-17 signaling pathway: A potential therapeutic target for reducing skeletal muscle inflammation. Cytokine 2024; 181:156691. [PMID: 38986253 DOI: 10.1016/j.cyto.2024.156691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND The interleukin-17 (IL-17) signaling pathway is intricately linked with immunity and inflammation; however, the association between the IL-17 signaling pathway and skeletal muscle inflammation remains poorly understood. The study aims to investigate the role of the IL-17 signaling pathway in skeletal muscle inflammation and to evaluate the therapeutic potential of anti-IL-17 antibodies in reducing muscle inflammation. METHODS A skeletal muscle inflammation model was induced by cardiotoxin (CTX) injection in C57BL6/J mice. Following treatment with an anti-IL-17 antibody, we conducted a comprehensive analysis integrating single-cell RNA sequencing (scRNA-seq), bioinformatics, enzyme-linked immunosorbent assay (ELISA), immunofluorescence, and Western blot techniques to elucidate underlying mechanisms. RESULTS scRNA-seq analysis revealed a significant increase in neutrophil numbers and activity in inflamed skeletal muscle compared to other cell types, including macrophages, T cells, B cells, endothelial cells, fast muscle cells, fibroblasts, and skeletal muscle satellite cells. The top 30 differentially expressed genes within neutrophils, along with 55 chemokines, were predominantly enriched in the IL-17 signaling pathway. Moreover, the IL-17 signaling pathway exhibited heightened expression in inflamed skeletal muscle, particularly within neutrophils. Treatment with anti-IL-17 antibody resulted in the suppression of IL-17 signaling pathway expression, accompanied by reduced levels of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α, as well as decreased numbers and activity of Ly6g+/Mpo+ neutrophils compared to CTX-induced skeletal muscle inflammation. CONCLUSION Our findings suggest that the IL-17 signaling pathway plays a crucial role in promoting inflammation within skeletal muscle. Targeting this pathway may hold promise as a therapeutic strategy for ameliorating the inflammatory micro-environment and reducing cytokine production.
Collapse
Affiliation(s)
- Hongwen Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China; Department of Discipline Construction Office, Panzhihua Central Hospital, Panzhihua, Sichuan Province, China
| | - Shiguo Yuan
- Department of Orthopaedic, Hainan Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Haikou, Hainan Province, China; Department of Orthopaedic, Affiliated Hospital of Chinese Medicine, Hainan Medical University, Haikou, Hainan Province, China
| | - Kai Zheng
- Department of Orthopaedic, Hainan Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Haikou, Hainan Province, China; Department of Orthopaedic, Affiliated Hospital of Chinese Medicine, Hainan Medical University, Haikou, Hainan Province, China
| | - Gaofeng Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Junhua Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Baofei Ye
- Department of Orthopaedic, Hainan Hospital, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Haikou, Hainan Province, China; Department of Orthopaedic, Affiliated Hospital of Chinese Medicine, Hainan Medical University, Haikou, Hainan Province, China
| | - Li Yin
- Department of Discipline Construction Office, Panzhihua Central Hospital, Panzhihua, Sichuan Province, China.
| | - Yikai Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China; The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
10
|
Wu Y, Xia Y, Hu A, Xiong G, Wu W, Shi L, Chen L, Guo X, Qiao Y, Liu C, Yin T, Wang L, Chen S. Difference in muscle metabolism caused by metabolism disorder of rainbow trout liver exposed to ammonia stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171576. [PMID: 38461997 DOI: 10.1016/j.scitotenv.2024.171576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Ammonia pollution is an important environmental stress factors in water eutrophication. The intrinsic effects of ammonia stress on liver toxicity and muscle quality of rainbow trout were still unclear. In this study, we focused on investigating difference in muscle metabolism caused by metabolism disorder of rainbow trout liver at exposure times of 0, 3, 6, 9 h at 30 mg/L concentrations. Liver transcriptomic analysis revealed that short-term (3 h) ammonia stress inhibited carbohydrate metabolism and glycerophospholipid production but long-term (9 h) ammonia stress inhibited the biosynthesis and degradation of fatty acids, activated pyrimidine metabolism and mismatch repair, lead to DNA strand breakage and cell death, and ultimately caused liver damage. Metabolomic analysis of muscle revealed that ammonia stress promoted the reaction of glutamic acid and ammonia to synthesize glutamine to alleviate ammonia toxicity, and long-term (9 h) ammonia stress inhibited urea cycle, hindering the alleviation of ammonia toxicity. Moreover, it accelerated the consumption of flavor amino acids such as arginine and aspartic acid, and increased the accumulation of bitter substances (xanthine) and odorous substances (histamine). These findings provide valuable insights into the potential risks and hazards of ammonia in eutrophic water bodies subject to rainbow trout.
Collapse
Affiliation(s)
- Yiwen Wu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yuting Xia
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Ao Hu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Guangquan Xiong
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Wenjin Wu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Liu Shi
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Lang Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xiaojia Guo
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yu Qiao
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Chunsheng Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Tao Yin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lan Wang
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Sheng Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
11
|
Ding R, Yang R, Fu Z, Zhao W, Li M, Yu G, Ma Z, Bai Z. Response of antioxidation and immunity to combined influences of pH and ammonia nitrogen in the spotted babylon ( Babylonia areolata). Heliyon 2024; 10:e29205. [PMID: 38638986 PMCID: PMC11024560 DOI: 10.1016/j.heliyon.2024.e29205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024] Open
Abstract
Spotted babylon were exposed to three different pH levels (7.0, 8.0 and 9.0) and four different concentrations of ammonia nitrogen (0.02, 1.02, 5.10 and 10.20 mg/L) in seawater to determine their acute toxicity and physiological responses to environmental fluctuation. The study evaluated four antioxidant enzymes: catalase (CAT), alkaline, superoxide dismutase (SOD), peroxidase (POD) and glutathione peroxidase (GSH-PX), and two immunoenzymes: acid phosphatase (ACP) and phosphatase (AKP). Over time, the immunoenzyme activity was significantly affected by pH and ammonia nitrogen concentration. After being exposed to pH and ammonia nitrogen, the spotted babylon showed signs of unresponsiveness to external stimuli, reduced vitality, slow movement, and an inability to maintain an upright position. Over time, the spotted babylon exhibited a trend of increasing and then decreasing GSH-PX, CAT, and SOD activities to adapt to the changing environment and enhance its immunity. On the contrary, the POD and ACP activities exhibited a decreasing trend initially, followed by an increasing trend over time and the AKP activity showed a gradual increase with time. The combined effect of pH and ammonia was found to be stronger than the effect of either factor alone. The interaction between pH and ammonia increased the activity of the spotted babylon antioxidant enzymes, induced oxidative stress, and reduced the ability of the spotted babylon's non-specific immune system to reverse it. Thus, the reverse-back of the spotted babylon was higher when pH and ammonia stress were dual than when pH or ammonia were single-factor stresses. The study results will establish a theoretical basis for analyzing the risk of multiple factors to the spotted babylon, and also enrich the basic information about the shellfish immune system.
Collapse
Affiliation(s)
- Ruixia Ding
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Rui Yang
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Zhengyi Fu
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- College of Science and Engineering, Flinders University, Adelaide 5001, Australia
| | - Wang Zhao
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Minghao Li
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Gang Yu
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Zhenhua Ma
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- College of Science and Engineering, Flinders University, Adelaide 5001, Australia
| | - Zemin Bai
- Yazhou Bay Agriculture and Aquaculture Co., Ltd., Sanya 572025, China
| |
Collapse
|
12
|
Ji X, Guo J, Ma Y, Zhang S, Yang Z, Li Y, Ping K, Xin Y, Dong Z. Quercetin alleviates the toxicity of difenoconazole to the respiratory system of carp by reducing ROS accumulation and maintaining mitochondrial dynamic balance. Toxicol Appl Pharmacol 2024; 484:116860. [PMID: 38342444 DOI: 10.1016/j.taap.2024.116860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
Difenoconazole (DFZ) is a fungicidal pesticide extensively employed for the management of fungal diseases in fruits, vegetables, and cereal crops. However, its potential environmental impact cannot be ignored, as DFZ accumulation is able to lead to aquatic environment pollution and harm to non-target organisms. Quercetin (QUE), a flavonoid abundant in fruits and vegetables, possesses antioxidant and anti-inflammatory properties. In this article, carp were exposed to 400 mg/kg QUE and/or 0.3906 mg/L DFZ for 30 d to investigate the effect of QUE on DFZ-induced respiratory toxicity in carp. Research shows that DFZ exposure increases reactive oxygen species (ROS) production in the carp's respiratory system, leading to oxidative stress, inflammation, and damage to gill tissue and tight junction proteins. Further research demonstrates that DFZ induces mitochondrial dynamic imbalance and gill cell apoptosis. Notably, QUE treatment significantly reduces ROS levels, alleviates oxidative stress and inflammation, and mitigates mitochondrial dynamics imbalance and mitochondrial apoptosis. This study emphasizes the profound mechanism of DFZ toxicity to the respiratory system of common carp and the beneficial role of QUE in mitigating DFZ toxicity. These findings contribute to a better understanding of pesticide risk assessment in aquatic systems and provide new insights into strategies to reduce their toxicity.
Collapse
Affiliation(s)
- Xiaomeng Ji
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiajia Guo
- Lianyungang Higher Vocational College of Traditional Chinese Medicine, Lianyungang 222000, China
| | - Yeyun Ma
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shuai Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zuwang Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yuanyuan Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Kaixin Ping
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yue Xin
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zibo Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
13
|
Li Y, Zhang X, Tong R, Xu Q, Zhang N, Liao Q, Pan L. Mechanisms of ammonotelism, epithelium damage, cellular apoptosis, and proliferation in gill of Litopenaeus vannamei under NH 4Cl exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:15153-15171. [PMID: 38289553 DOI: 10.1007/s11356-024-32111-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
Excessive ammonia-N in coastal environment and aquaculture threatens the health of marine organisms. To explore the mechanism of gill damage induced by ammonia-N, transcriptome of Litopenaeus vannamei 's gill was carried out under 20 mg/L NH4Cl for 0, 6, and 48 h. K-means clustering analysis suggested that ammonia excretion and metabolism-related genes were elevated. GO and KEGG enrichment analysis suggested that glycosyltransferase activity and amino acid metabolism were affected by ammonia. Moreover, histological observation via three staining methods gave clues on the changes of gill after ammonia-N exposure. Increased mucus, hemocyte infiltration, and lifting of the lamellar epithelium suggested that gill epithelium was suffering damage under ammonia-N stress. Meanwhile, the composition of extracellular matrix (ECM) in connective tissue changed. Based on the findings of transcriptomic and histological analysis, we further investigated the molecular mechanism of gill damage under multiple concentrations of NH4Cl (0, 2, 10, 20 mg/L) for multiple timepoints (0, 3, 6, 12, 24, 48, 72 h). First, ammonia excretion was elevated via ion channel, transporter, and exocytosis pathways, but hemolymph ammonia still kept at a high level under 20 mg/L NH4Cl exposure. Second, we focused on glycosaminoglycan metabolism which was related to the dynamics of ECM. It turned out that the degradation and biosynthesis of chondroitin sulfate (CS) were elevated, suggesting that the structure of CS might be destructed under ammonia-N stress and CS played an important role in maintaining gill structure. It was enlightening that the destructions occurred in extracellular regions were vital to gill damage. Third, ammonia-N stress induced a series of cellular responses including enhanced apoptosis, active inflammation, and inhibited proliferation which were closely linked and jointly led to the impairment of gill. Our results provided some insights into the physiological changes induced by ammonia-N and enriched the understandings of gill damage under environmental stress.
Collapse
Affiliation(s)
- Yaobing Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Xin Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Qiuhong Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Ning Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Qilong Liao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, People's Republic of China.
| |
Collapse
|
14
|
Zhang G, Zhou X, Liu S, Ma Y, Li H, Du Y, Cao Z, Sun L. Full-length transcriptomics study of Ustiloxins-induced hepatocyte injury. Toxicon 2024; 238:107604. [PMID: 38181838 DOI: 10.1016/j.toxicon.2024.107604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/14/2023] [Accepted: 01/03/2024] [Indexed: 01/07/2024]
Abstract
Ustiloxins is a mycotoxin produced by the metabolism of Rice false smut. Studies have shown that Ustiloxins may be toxic to animals, but there is still a lack of toxicological evidence. The liver, as the main organ for the biotransformation of foreign chemicals, may be the direct target organ of Ustiloxins toxicity. In this study, we found that cell viability decreased in a dose- and time-dependent manner when BNL CL.2 cells were treated with different concentrations of Ustiloxins (0, 5, 10, 20, 30, 40, 60, 80, 100, 150 and 200 μg/mL) for 24 and 48 h. In addition, scanning electron microscope observation showed that the cell membrane of the experimental group was damaged, with the appearance of apoptotic bodies. Moreover, the ROS and GSH levels were significantly increased in cells exposed to Ustiloxins. We analyzed the key action targets of Ustiloxins on hepatocyte injury using full-length transcriptomics. A total of 1099 differentially expressed genes were screened, of which 473 genes were up-regulated, and 626 genes were down-regulated. Besides, we also found that the expression of MCM7 and CDC45 in BNL CL.2 cells treated with Ustiloxins decreased, and the expression of CCl-2, CYP1b1, CYP4f13, and GSTM1 increased according to qRT-PCR. Ustiloxins might change CYP450 and GST-related genes, affect DNA replication and cell cycle, and lead to oxidative stress and liver cell injury.
Collapse
Affiliation(s)
- Guomei Zhang
- School of Public Health (Food Science and Engineering), Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Xuming Zhou
- School of Public Health (Food Science and Engineering), Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Shanshan Liu
- School of Public Health (Food Science and Engineering), Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Youning Ma
- Rice Product Quality Inspection and Supervision Center of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, China
| | - Han Li
- School of Public Health (Food Science and Engineering), Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Yingchun Du
- School of Public Health (Food Science and Engineering), Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Zhaoyun Cao
- Rice Product Quality Inspection and Supervision Center of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, Zhejiang, 310006, China.
| | - Lihua Sun
- School of Public Health (Food Science and Engineering), Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China.
| |
Collapse
|
15
|
Wei D, Wang L, Poopal RK, Ren Z. IR-based device to acquire real-time online heart ECG signals of fish (Cyprinus carpio) to evaluate the water quality. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122564. [PMID: 37717894 DOI: 10.1016/j.envpol.2023.122564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Water quality monitoring is a challenging task due to continuous pollution. The rapid development of engineering technologies has paved the way for the development of efficient and convenient computer-based online continuous water-quality assessment techniques. Techniques based on biological-responses are gaining attention, worldwide. Different biosensors have been developed in recent years to monitor real-time biological responses to evaluate water-quality. The survival and function of various organs of the organism depends on the cardiac system. Alterations in the cardiac system could signify the occurrence/initiation of stress in the organism. We developed a real-time online cardiac function assessment system-OCFAS to acquire fish ECG-signals. We obtained P-wave, R-wave, T-wave, PR-intervals, QT-intervals and QRS-complex continuously, which did not affect the normal activities of carp. We exposed Cyprinus carpio to different concentrations (National Environmental Quality Standards) of ammonia for 48 h. Our OCFAS has precisely acquired the required ECG-signals. A real-time dataset reveals sensitivity to ammonia in carp ECG-indexes. Compared with the control group the P-wave, R-wave and T-wave were weaker in ammonia-treated groups. In contrast, the PR-intervals, QT-intervals and QRS-complex were prolonged in the ammonia-treatment groups. The self-organizing map signifies that the PR-intervals, the QRS-complex and the QT-intervals are consistent with environmental stress. Linear regression analysis also quantitatively signifies that the PR interval has the highest R2 value and the lowest SSE-value, followed by the QRS complex and the QT interval. A concentration-related effect was observed in the ammonia treated groups. The integrated biomarker response (IBRv2) index was used to determine the overall stress of ammonia on carp heart ECG-indexes. IBRv2 also supports the real-time response of carp to ammonia stress. Ammonia levels in the aquaculture and water environment require special attention to avoid its adverse effects on the health of aquatic biota. Our study emphasizes the importance of online real-time fish ECG for water-quality assessment.
Collapse
Affiliation(s)
- Danxian Wei
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China
| | - Lei Wang
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China; Jinan Central Hospital, No. 105, Jiefang Road, Jinan, Shandong, 250013, China
| | - Rama-Krishnan Poopal
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Jinan, 250358, China.
| |
Collapse
|
16
|
Wang B, Zheng Z, Chen L, Zhang W, He Y, Wu B, Ji R. Transcriptomics reveals key regulatory pathways and genes associated with skin diseases induced by face paint usage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 890:164374. [PMID: 37236445 DOI: 10.1016/j.scitotenv.2023.164374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
The use of face paint cosmetics can cause skin diseases in opera performers due to the presence of heavy metals and other toxic ingredients in the cosmetics. However, the underlying molecular mechanism for these diseases remains unknown. Here we examined the transcriptome gene profile of human skin keratinocytes exposed to artificial sweat extracts of face paints, and identified the key regulatory pathways and genes, using RNA sequencing technique. Bioinformatics analyses suggested that the face paint exposure induced the differentially expression of 1531 genes and enriched inflammation-relevant TNF and IL-17 signaling pathways after just 4 h of exposure. Inflammation-relevant genes CREB3L3, FOS, FOSB, JUN, TNF, and NFKBIA were identified as the potential regulatory genes, and SOCS3 capable to prevent inflammation-induced carcinogenesis as the hub-bottleneck gene. Long-term exposure (24 h) could exacerbate inflammation, accompanied by interference in cellular metabolism pathways, and the potential regulatory genes (ATP1A1, ATP1B1, ATP1B2, FXYD2, IL6, and TNF) and hub-bottleneck genes (JUNB and TNFAIP3) were all related to inflammation induction and other adverse responses. We proposed that the exposure to face paint might cause the inflammatory factors TNF and IL-17, which are encoded by the genes TNF and IL17, to bind to receptors and activate TNF and IL-17 signaling pathways, leading to the expression of cell proliferation factors (CREB and AP-1) and proinflammatory mediators including transcription factors (FOS, JUN, and JUNB), inflammatory factors (TNF-α and IL6), and intracellular signaling factors (TNFAIP3). This finally resulted in cell inflammation, apoptosis, and other skin diseases. TNF was identified as the key regulator and connector in all the enriched signaling pathways. Our study provides the first insights into the cytotoxicity mechanism of face paints to skin cells and highlights the need for stricter regulations in face paint safety.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhaohao Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wenhui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yujie He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China.
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China
| |
Collapse
|