1
|
Li Y, Chen R, Lv J, Su J, Gao M, Ma K, Cheng X, Shu W. A dual-functional fluorescent probe for biosystem imaging and food safety monitoring of HSO 3- with high selectivity and sensitivity. Anal Bioanal Chem 2025; 417:2947-2956. [PMID: 40119000 DOI: 10.1007/s00216-025-05837-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/25/2025] [Accepted: 03/13/2025] [Indexed: 03/24/2025]
Abstract
In the food field, HSO3- is commonly used as a beverage additive, antioxidant, enzyme inhibitor, and preservative to extend shelf life and freshness. However, excessive intake of exogenous HSO3- can lead to abnormal HSO3- concentration levels in the body, causing cardiovascular and respiratory diseases. This highlights the urgent need to develop a rapid and sensitive probe for the quantitative detection of HSO3- in foods and biosystems. In this study, we design and synthesize a novel HSO3- fluorescent probe named DCPD. Bioimaging experiments show that DCPD has good mitochondrial targeting and can be used to imaging the redox process of HSO3-/H2O2 in cells and tissue. In addition, DCPD has been used in detecting HSO3- in foods with satisfactory recoveries (98.62-105.06%), further demonstrating its compatibility and utility. Thus, the DCPD probe offers substantial promise for application in food analysis and the assessment of HSO3- concentrations in biological systems.
Collapse
Affiliation(s)
- Yumeng Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Ran Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Juanjuan Lv
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Jiali Su
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Mengxu Gao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, P. R. China
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Kaifu Ma
- School of Medical Laboratory, Qilu Medical University, Zibo, 255000, P. R. China.
| | - Xiupei Cheng
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, P. R. China.
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, P. R. China.
| |
Collapse
|
2
|
Yang X, Fan C, Gao J, Gao Y, Wang X, Xu Z, Li F, Yu H, Huang Y, Chen J, Shan Y. Near-infrared fluorescence imaging platform with ultra large Stokes shift for monitoring and bioimaging of hydrogen peroxide in the process of ferroptosis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125666. [PMID: 39740584 DOI: 10.1016/j.saa.2024.125666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/14/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025]
Abstract
Hydrogen peroxide (H2O2), as a strong oxidant, is crucial for the aerobic metabolism of organisms and is intricately linked to the onset of numerous diseases. Real-time monitor H2O2 levels in the environment and biological microenvironment is of paramount importance for environment protection and elucidating H2O2-related physiological and pathological processes. In this study, a novel near-infrared fluorescence imaging platform was developed and a near-infrared fluorescent probe FBMH was constructed based on the platform with photoinduced electron transfer mechanism. A series of experiments to evaluate its spectral properties and bioimaging capabilities proved that the probe demonstrated near-infrared emission, excellent selectivity and anti-interference capability in complex environments, along with high sensitivity (LOD = 2.6 × 10-9 mol/L), large Stokes shift (220 nm) and rapid response (15 min). In addition, the detection of H2O2 in actual water samples was realized with the probe. Furthermore, the implement of bioimaging of exogenous and endogenous H2O2 in Hela cells, Raw264.7 cells, zebrafish and BALB/c nude mice, especially the visualization of H2O2 level changes in the process of ferroptosis, testified its excellent potential in monitoring H2O2 in H2O2-related diseases.
Collapse
Affiliation(s)
- Xintong Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chuanfeng Fan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jian Gao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yingkai Gao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaochun Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Liaoning Key Laboratory of Development and Utilization for Natural Products Active Molecules, School of Chemistry and Life Science, Anshan Normal University, Anshan 114007, China.
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Fei Li
- Biomedical Analysis Center, Army Medical University, Chongqing 400038, China.
| | - Haifeng Yu
- College of Chemistry, Baicheng Normal University, Baicheng, Jilin 137000, China
| | - Yi Huang
- Biomedical Analysis Center, Army Medical University, Chongqing 400038, China
| | - Jin Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yingying Shan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
3
|
Chaturvedi V, Kumari R, Sharma P, Pati AK. Diverse Fluorescent Probe Concepts for Detection and Monitoring of Reactive Oxygen Species. Chem Asian J 2025; 20:e202401524. [PMID: 39924450 PMCID: PMC11980770 DOI: 10.1002/asia.202401524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/14/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
World-wide research on reactive oxygen species (ROS) continues to reveal new information about the role and impact of ROS on human health and disease. ROS are generated in live cells as a byproduct of aerobic metabolism. Physiological concentrations of cellular ROS are important for signaling and homeostasis, but excessive generation of ROS causes apoptotic and necrotic cell death and various health disorders. Fluorescence technology is a powerful tool to detect, monitor, and image cellular ROS. The present review provides an overview of diverse organic dye-based fluorescent probe concepts that involve modifications of traditional fluorescent dyes utilizing basic principles of dye chemistry and photophysics. Fluorescence responses of the probes and their specificity towards ROS are discussed through analyses of their photophysical and photochemical parameters. We also provide an outlook on future directions of ROS-responsive fluorescent dyes, which could enable the design and development of advanced probes for gaining deeper insights into redox biology.
Collapse
Affiliation(s)
- Vineeta Chaturvedi
- Department of ChemistryBirla Institute of Technology and Science PilaniPilaniRajasthan333031India
| | - Ritu Kumari
- Department of ChemistryBirla Institute of Technology and Science PilaniPilaniRajasthan333031India
| | - Prakriti Sharma
- Department of ChemistryBirla Institute of Technology and Science PilaniPilaniRajasthan333031India
| | - Avik K. Pati
- Department of ChemistryBirla Institute of Technology and Science PilaniPilaniRajasthan333031India
| |
Collapse
|
4
|
Li C, Zhang W, Xu X, Zhou L. Applications and Challenges of Fluorescent Probes for the Detection of Pesticide Residues in Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4982-4997. [PMID: 39985129 DOI: 10.1021/acs.jafc.5c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
In food safety, detecting pesticide residues from environmental exposure is garnering increasing global attention. Therefore, it is crucial to develop rapid and straightforward detection methods for pesticide residues. In comparison to the limitations of traditional detection techniques, fluorescent probes have become ideal tools for detecting pesticide residues in food due to their superior non-destructive detecting and real-time monitoring capabilities. In this work, first, the types of pesticides commonly found in food and the fundamental principles underlying fluorescent probe materials are introduced. Second, the characteristics, applications, advantages, and limitations of prevalent fluorescent probes for food pesticide residue detection are evaluated. Finally, the significance of fluorescent probe materials in the detection of pesticide residues within the context of food safety and the developmental potential of fluorescent probes in this field are summarized and discussed, aiming to provide a valuable reference for developing new probes for pesticide residue detection and future research directions.
Collapse
Affiliation(s)
- Chaoqing Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Wei Zhang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaofang Xu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| |
Collapse
|
5
|
Fan C, Wei L, Limeng Y, Li Y, Zheng M, Song Y, Shu W, Zeng C. A novel ultrafast and highly sensitive NIR fluorescent probe for the detection of organophosphorus pesticides in foods and biological systems. Food Chem 2025; 463:141172. [PMID: 39260019 DOI: 10.1016/j.foodchem.2024.141172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
The threat posed by organophosphorus pesticides (OPS) to food safety, human health, and the ecological environment is significant, which underscoring the need for the development of new detection tools. We designed and synthesized a NIR fluorescent probe PT-CES which targets carboxylesterase (CES), for the detection of OPS based on the principle of enzyme inhibition. The PT-CES is capable of instantaneous response to CES, exhibiting excellent stability, anti-interference capability. PT-CES realizes the quantitative detection of CES and OPS. It is noteworthy that PT-CES shows excellent stable and accurate detection ability in vegetable pesticide testing. It also enables the monitoring of CES activity in cells and liver tissue. This provides a novel tool for tracking the effect of OPS on CES activity in biological systems. Furthermore, it provides a useful method for ensuring food safety and enhancing pesticide residue analysis.
Collapse
Affiliation(s)
- Cailing Fan
- School of Chemistry and Chemical Engineering, Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Collaborative Innovation Center of Ecological Civilization, Hainan University, No 58, Renmin Avenue, Haikou 570228, PR China
| | - Liangchen Wei
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Yongwei Limeng
- School of Chemistry and Chemical Engineering, Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Collaborative Innovation Center of Ecological Civilization, Hainan University, No 58, Renmin Avenue, Haikou 570228, PR China; Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571101, Hainan, PR China
| | - Yumeng Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China
| | - Mingyue Zheng
- School of Medical Laboratory, Qilu Medical University, Zibo 255000, PR China.
| | - Yonghao Song
- Tsingtao Brewery Co., LTD. Qingdao 266000, PR China
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, PR China.
| | - Chaoyuan Zeng
- School of Chemistry and Chemical Engineering, Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Collaborative Innovation Center of Ecological Civilization, Hainan University, No 58, Renmin Avenue, Haikou 570228, PR China.
| |
Collapse
|
6
|
Deng C, Wang Y, Sun Y, Lü C. A near-infrared fluorescent probe with thiadiazole unit as key skeleton for ICT and ESIPT mechanism and effective detection of Cu 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124465. [PMID: 38788501 DOI: 10.1016/j.saa.2024.124465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/28/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024]
Abstract
Fluorescent probe L-I was synthesized to demonstrate that 1,3,4-thiadiazole is an attractive moiety and could be utilized as positive hydrogen bond acceptor for excited state intramolecular proton transfer (ESIPT) processes, guider of electrons movement for intramolecular charge transfer (ICT) process and identify group for mental ions. Furthermore, dicyanoisophorone framework was employed to improve the fluorescence characteristics and near-infrared (NIR) fluorescent emission at 695 nm accompanied by a Stoke's shift as large as 260 nm was obtained. L-I could selectively detect Cu2+ over other analytes taking advantages of high sensitivity, fast response within 30 s and low detection limit (0.026 μM). More important, L-I exhibited good performance for detection of Cu2+ in actual water samples, food products, traditional Chinese medicine and for cell imaging which demonstrates practical significance in the fields of environmental monitor, food safety and biotechnology.
Collapse
Affiliation(s)
- Changyue Deng
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian 116029, P.R. China
| | - Yongchen Wang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian 116029, P.R. China
| | - Yu Sun
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian 116029, P.R. China
| | - Chengwei Lü
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian 116029, P.R. China.
| |
Collapse
|
7
|
Wei L, Zhang Y, Zheng M, Fan C, Zhang P, Limeng Y, Yang F, Zeng C, Han X, Shu W. Novel Ultrasensitive Fluorescent Probe for Bioimaging Carboxylesterase and Detecting Pesticide Residues in Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20615-20621. [PMID: 39238336 DOI: 10.1021/acs.jafc.4c05893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Pesticide residues pose a significant threat to food safety and human health, necessitating the development of novel detection tools. Pesticides can inhibit the activity of certain biological enzymes, so enzyme inhibition is one of the methods of pesticide detection. In this study, we developed a novel near-infrared fluorescent probe named TCFCl-CES based on the tricyanofuran structure, for ultrasensitive detection of carboxylesterase (CES). TCFCl-CES exhibits strong and stable fluorescence, excellent specificity. Notably, the fluorescence intensity of TCFCl-CES shows a linear relationship with CES concentration, achieving an exceptionally low detection limit of 4.41 × 10-5 u/mL. This ultrasensitive probe can also effectively detect pesticide residues in vegetables and monitor CES activity in cells and liver tissues. TCFCl-CES stands out for its rapid and accurate detection capabilities, making it an essential tool for accurately monitoring pesticide residue. It also has great potential for tracking CES activity in biological systems. Additionally, it offers a robust solution for food safety and improving pesticide residue analysis.
Collapse
Affiliation(s)
- Liangchen Wei
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, P. R. China
| | - Yu Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, P. R. China
| | - Mingyue Zheng
- School of Medical Laboratory, Qilu Medical University, Zibo 255000, P. R. China
| | - Cailing Fan
- School of Chemistry and Chemical Engineering, Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou 570228, P. R. China
| | - Peng Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, P. R. China
| | - Yongwei Limeng
- School of Chemistry and Chemical Engineering, Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou 570228, P. R. China
| | - Fengtang Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, P. R. China
| | - Chaoyuan Zeng
- School of Chemistry and Chemical Engineering, Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou 570228, P. R. China
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 255000, P. R. China
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, P. R. China
| |
Collapse
|
8
|
Li W, Fu T, Zheng M, Wen H, Li X, Guo W, Li X, Yu Q, Jin M, Liu K, Sheng W, Zhu B. Discovery of a highly selective fluorescent probe for hydrogen peroxide and its biocompatibility evaluation and bioimaging applications in cells and zebrafish. Bioorg Chem 2024; 150:107552. [PMID: 38901280 DOI: 10.1016/j.bioorg.2024.107552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/03/2024] [Accepted: 06/08/2024] [Indexed: 06/22/2024]
Abstract
As one of the most widely distributed reactive oxygen species in vivo, hydrogen peroxide plays divergent and important roles in cell growth, differentiation and aging. When the level of hydrogen peroxide in the body is abnormal, it will lead to genome mutation and induce irreversible oxidative modification of proteins, lipids and polysaccharides, resulting in cell death or even disease. Therefore, it is significant to develop a sensitive and specific probe for real-time detection of hydrogen peroxide in vivo. In this study, the response mechanism between hydrogen peroxide and probe QH was investigated by means of HRMS and the probe showed good optical properties and high selectivity to hydrogen peroxide. Note that the evaluating of probe biocompatibility resulted from cytotoxicity test, behavioral test, hepatotoxicity test, cardiotoxicity test, blood vessel toxicity test, immunotoxicity test and neurotoxicity test using cell and transgenic zebrafish models with more than 20 toxic indices. Furthermore, the detection performance of the probe for hydrogen peroxide was evaluated by multiple biological models and the probe was proved to be much essential for the monitoring of hydrogen peroxide in vivo.
Collapse
Affiliation(s)
- Wenzhai Li
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Tingting Fu
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Min Zheng
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Huayan Wen
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Xinke Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Wenli Guo
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Xiao Li
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Qian Yu
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Meng Jin
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Kechun Liu
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Wenlong Sheng
- Biology Institute, Bioengineering Department, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| |
Collapse
|
9
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
10
|
Ai M, Jiang Y, Xiao Z, Liu J, Liu C. Ratiometric luminescence detection of H 2O 2 in food samples using a terbium coordination polymer sensitized with 3-carboxyphenylboronic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124114. [PMID: 38447441 DOI: 10.1016/j.saa.2024.124114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
A ratiometric luminescent probe was fabricated using adenosine monophosphate (AMP) as a bridging ligand and 3-carboxyphenylboronic acid (3-CPBA) as the sensitizer and functional ligand that allowed the probe to recognize hydrogen peroxide (H2O2). The probe was labeled AMP-Tb/3-CPBA. Adding H2O2 caused the nonluminescent 3-CPBA to be converted into 3-hydroxybenzoic acid, which strongly luminesces at 401 nm. This meant that adding H2O2 decreased the AMP-Tb/3-CPBA luminescence intensity at 544 nm and caused luminescence at 401 nm. The 401 and 544 nm luminescence intensity ratio (I401/I544) was strongly associated with the H2O2 concentration between 0.1 and 60.0 μM, and the detection limit was 0.23 μM. Dual emission reverse-change ratio luminescence sensing using the probe allowed environmental effects to be excluded and the assay to be very selective. We believe that the results pave the way for the development of new functionalized lanthanide coordination polymers for use in luminescence assays.
Collapse
Affiliation(s)
- Mimi Ai
- College of Chemistry and Materials Science, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-based Materials, Anhui Normal University, Wuhu 241000, China
| | - Yuting Jiang
- College of Chemistry and Materials Science, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-based Materials, Anhui Normal University, Wuhu 241000, China
| | - Zhiyuan Xiao
- College of Chemistry and Materials Science, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-based Materials, Anhui Normal University, Wuhu 241000, China
| | - Jinshui Liu
- College of Chemistry and Materials Science, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-based Materials, Anhui Normal University, Wuhu 241000, China.
| | - Chenfu Liu
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
11
|
Zhang Y, Jiang Q, Wang K, Fang Y, Zhang P, Wei L, Li D, Shu W, Xiao H. Dissecting lysosomal viscosity fluctuations in live cells and liver tissues with an ingenious NIR fluorescent probe. Talanta 2024; 272:125825. [PMID: 38417371 DOI: 10.1016/j.talanta.2024.125825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Viscosity is a pivotal component in the cell microenvironment, while lysosomal viscosity fluctuation is associated with various human diseases, such as tumors and liver diseases. Herein, a near-infrared fluorescent probe (BIMM) based on merocyanine dyes was designed and synthesized for detecting lysosomal viscosity in live cells and liver tissue. The increase in viscosity restricts the free rotation of single bonds, leading to enhanced fluorescence intensity. BIMM exhibits high sensitivity and good selectivity, and is applicable to a wide pH range. BIMM has near-infrared emission, and the fluorescent intensity shows an excellent linear relationship with viscosity. Furthermore, BIMM possessing excellent lysosomes-targeting ability, and can monitor viscosity changes in live cells stimulated by dexamethasone, lipopolysaccharide (LPS), and nigericin, and differentiate between cancer cells and normal cells. Noticeably, BIMM can accurately analyze viscosity changes in various liver disease models with HepG2 cells, and is successfully utilized to visualize variations in viscosity on APAP-induced liver injury. All the results demonstrated that BIMM is a powerful wash-free tool to monitor the viscosity fluctuations in living systems.
Collapse
Affiliation(s)
- Yu Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Qingqing Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Kai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, PR China
| | - Yuqi Fang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Peng Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Liangchen Wei
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Dongpeng Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, PR China
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China.
| | - Haibin Xiao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, PR China.
| |
Collapse
|
12
|
Sun X, Jiang Q, Zhang Y, Su J, Liu W, Lv J, Yang F, Shu W. Advances in fluorescent probe development for bioimaging of potential Parkinson's biomarkers. Eur J Med Chem 2024; 267:116195. [PMID: 38330868 DOI: 10.1016/j.ejmech.2024.116195] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease. The clinical symptoms of PD are usually related to motor symptoms, including postural instability, rigidity, bradykinesia, and resting tremors. At present, the pathology of PD is not yet clear. Therefore, revealing the underlying pathological mechanism of PD is of great significance. A variety of bioactive molecules are produced during the onset of Parkinson's, and these bioactive molecules may be a key factor in the development of Parkinson's. The emerging fluorescence imaging technology has good sensitivity and high signal-to-noise ratio, making it possible to deeply understand the pathogenesis of PD through these bioactive molecules. Currently, fluorescent probes targeting PD biomarkers are widely developed and applied. This article categorizes and summarizes fluorescent probes based on different PD biomarkers, systematically introduces their applications in the pathological process of PD, and finally briefly elaborates on the challenges and prospects of these probes. We hope that this review will provide in-depth reference insights for designing fluorescent probes, and contribute to study of the pathogenesis and clinical treatment of PD.
Collapse
Affiliation(s)
- Xiaoqian Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Qingqing Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Yu Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Jiali Su
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Wenqu Liu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Juanjuan Lv
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China.
| | - Fengtang Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China.
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China.
| |
Collapse
|
13
|
Gong J, Wang X, Fan HE, Wang J, Zhang F, Mao Z. Engineering an activatable fluorescent probe for studying ONOO - in pyroptotic process. Talanta 2024; 267:125216. [PMID: 37722344 DOI: 10.1016/j.talanta.2023.125216] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Pyroptosis, a recently discovered form of programmed cell death, plays a pivotal role in oncological treatment. Howbeit, the mechanisms underlying pyroptosis in tumor treatment remain unclear. Previous research has demonstrated that the occurrence of pyroptosis generally accompanies a surge of reactive oxygen species (ROS) generation, with ONOO- being one of these ROS and closely linked to numerous diseases. Therefore, it is imperative to investigate the potential association between ONOO- and pyroptosis. Herein, a highly sensitive and rapidly responsive near-infrared (NIR) probe, Rd700-PN, is fabricated for exploring unrevealed relationships between ONOO- and pyroptosis. We successfully harness Rd700-PN to detect ONOO- fluctuation during cellular pyroptosis for the first time. Furthermore, the results demonstrate that Rd700-PN can scout the chemotherapeutic drug's induction ability of tumor pyroptosis in vivo. Notably, this study provides an excellent means to shed light on the correlation between ONOO- and pyroptosis and to screen antitumor drugs activating pyroptosis.
Collapse
Affiliation(s)
- Jiankang Gong
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Xiaoyu Wang
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Hai-En Fan
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Jiaxuan Wang
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Fan Zhang
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China.
| | - Zhiqiang Mao
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
14
|
Pan Y, Yang Q, Xu H, Yuan Z, Xu H. Screening and optimization of a water-soluble near-infrared fluorescent probe for drug-induced liver injury monitoring. Anal Chim Acta 2023; 1276:341654. [PMID: 37573102 DOI: 10.1016/j.aca.2023.341654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/25/2023] [Accepted: 07/24/2023] [Indexed: 08/14/2023]
Abstract
Peroxynitrite (ONOO-) is a potential biomarker of drug-induced liver injury (DILI) and is involved in the process of DILI. Therefore, developing a reliable detection method for ONOO- will greatly contribute to ensuring drug safety and improving treatment efficiency. Here, based on the previous work, two kinds of NIR fluorescence probes PN and SPN were developed with phenyl-hydrazine as the ONOO- recognition group, which based on two fluorophores RN and SRN that are stable to ONOO-. A sensitive NIR probe SPN with good water solubility, low detection limit and good biocompatibility was selected through in vitro spectral property screening. Further experimental results show that there is a good linear relationship between the response intensity of probe SPN to ONOO- and the concentration of ONOO-, and the detection limit can reach 19.7 nM. At the cellular level, probe SPN can achieve a good and specific response to endogenous and exogenous ONOO-. Also, the probe SPN can be used for imaging and detection of DILI in zebrafish level and small animal level, indicating that probe SPN can be used as a powerful tool for diagnosis of DILI and efficacy evaluation of therapeutic drugs.
Collapse
Affiliation(s)
- Yanping Pan
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China; Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Qiuxing Yang
- Cancer Research Center Nantong, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Hong Xu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China
| | - Zhenwei Yuan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Road, Jiangning District, Nanjing, 210009, China.
| | - Hui Xu
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China.
| |
Collapse
|
15
|
Wang J, Li J, Xu L, Tan D, Guo R, Lin W. A robust activatable two-photon fluorescent probe for endogenous formaldehyde biomarker visualization diagnosis and evaluation of diabetes mellitus. Anal Chim Acta 2023; 1266:341371. [PMID: 37244658 DOI: 10.1016/j.aca.2023.341371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/19/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
Diabetes mellitus and its complications are one of the largest healthcare burdens in the world and are increasing every year. However, the lack of effective biomarkers and non-invasive real-time monitoring tools remains a great challenge for the early diagnosis of diabetes mellitus. Endogenous formaldehyde (FA) represents a key reactive carbonyl species in biological systems, and altered metabolism and functions of FA have been closely related to the pathogenesis and maintenance of diabetes. Among various noninvasive biomedical imaging techniques, the identification-responsive fluorescence (FL) imaging could greatly benefit the comprehensive multi-scale assessment of some diseases such as diabetes. Herein, we have designed a robust activatable two-photon probe DM-FA for the first highly selective monitoring of fluctuations in FA levels during diabetes mellitus. Through the density functional theory (DFT) theoretical calculations, we elucidated the rationality of the activatable fluorescent probe DM-FA turning on the FL before and after the reaction with FA. In addition, DM-FA has excellent high selectivity, high growth factor and good photostability in the process of recognizing FA. Due to the brilliant two-photon and one-photon FL imaging capabilities of DM-FA, it has been successfully used to visualize of exogenous and endogenous FA in cells and mice. Remarkably, as a powerful FL imaging visualization tool, DM-FA was introduced for the first time to visually diagnose and explore diabetes through the fluctuation of FA content. The successful application of DM-FA in two-photon and one-photon FL imaging experiments found elevated FA levels in high glucose-stimulated diabetic cell models. We successfully visualized upregulation of FA levels in diabetic mice and decreased of FA levels in diabetic mice scavenged by NaHSO3 from multiple perspectives using multiple imaging modalities. This work may provide a novel strategy for the initial diagnosis of diabetes mellitus and the evaluation of the efficacy of drug therapy for treating diabetes mellitus, which will likely have a positive impact on clinical medicine.
Collapse
Affiliation(s)
- Jiangyan Wang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Jiangfeng Li
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Lizhen Xu
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Dan Tan
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Rui Guo
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China.
| |
Collapse
|