1
|
Lin Z, Oh HJ, Chang KH, Lim JY, Oh JM. Spatio-temporal dynamics variation of dissolved organic matter and water quality parameters in Giheung Reservoir: A vertical perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125214. [PMID: 40186968 DOI: 10.1016/j.jenvman.2025.125214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 03/20/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Water reservoirs in densely populated areas play a crucial role in water supply, irrigation, and flood regulation. This study investigated the spatiotemporal dynamics of dissolved organic matter (DOM) and its interactions with water quality parameters in Giheung Reservoir, South Korea. Monthly water samples were collected at three depths, measuring fifteen physicochemical properties alongside DOM characterization using Excitation-Emission Matrix Parallel Factor Analysis (EEM-PARAFAC), identifying four DOM components: C1 (microbial protein-like), C2 (humic-like), C3 (terrestrial humic-like), and C4 (tyrosine/tryptophan-like). Seasonal stratification influenced DOM distribution, with humic-like DOM (C2, C3) accumulating in deeper layers during summer, while protein-like DOM (C1, C4) dominated surface waters due to enhanced biological productivity, and mixing periods homogenizing DOM across depths. The dimictic thermal regime, with moderate summer stratification and full mixing in spring and autumn, governed these patterns. 2D correlation spectroscopy (2D-COS) identified sequential DOM variation across layers, with humic-like DOM increasing at depth during stratification. Fluorescence indices-Fluorescence Index (FI), Humification Index (HIX), and Biological Index (BIX)-were integrated into structural equation modeling (SEM), showing that temperature and dissolved oxygen strongly drive protein-like DOM, while nitrogen and phosphorus compounds shape DOM reactivity. These findings enhance understanding of DOM biogeochemical processes and provide valuable insights for reservoir management to maintain water quality.
Collapse
Affiliation(s)
- Ziyu Lin
- Department of Environmental Science and Engineering, Kyung Hee University, Yongin-si, 17104, Gyeonggi, Republic of Korea
| | - Hye-Ji Oh
- Department of Environmental Science and Engineering, Kyung Hee University, Yongin-si, 17104, Gyeonggi, Republic of Korea
| | - Kwang-Hyeon Chang
- Department of Environmental Science and Engineering, Kyung Hee University, Yongin-si, 17104, Gyeonggi, Republic of Korea
| | - Juin Yau Lim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| | - Jong-Min Oh
- Department of Environmental Science and Engineering, Kyung Hee University, Yongin-si, 17104, Gyeonggi, Republic of Korea.
| |
Collapse
|
2
|
Liang J, Tan X, Ali I, Duan Z, Huang J, Zhu R. Polystyrene microplastics enhanced the photo-degradation and -ammonification of algae-derived dissolved organic matters. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135991. [PMID: 39369677 DOI: 10.1016/j.jhazmat.2024.135991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
Algae-derived organic matter (ADOM) is a key source of chromophoric dissolved organic matter (CDOM) in natural waters. When exposed to solar irradiation, ADOM undergoes gradual degradation and transformation. The escalating presence of microplastics (MPs) can act as a novel type of environmental photosensitizer, however its impacts on ADOM photodegradation remains largely unexplored. Thus, in this study, ADOM were extracted from four common algal species (Microcystis aeruginosa, Synechococcus sp., Chlorella pyrenoidosa and Scenedesmus obliquus) and exposed to UV irradiation with or without polystyrene (PS) MPs, namely ADOM+PS groups and ADOM groups, respectively. The results indicated that a more rapid degradation of amino acid-like substances (∼38 % vs. ∼22 %) and more ammonia products (1.86 vs. 1.21 mg L-1) were observed in the ADOM+PS groups compared to the ADOM groups after a five-day exposure. This enhanced photodegradation might be attributed to the production of environmentally persistent free radicals and reactive species during the photoaging of PS. Furthermore, PS-derived high electron transfer belt activity of ADOM led to the production of highly aromatic and humified products. These humic-like products could potentially accelerate the degradation of amino acid-like compounds by exciting the generation of excited triplet CDOM. This study underscores the role of MPs as environmental photosensitizers in promoting ADOM degradation and ammonia generation, providing insights on the transformation of ADOM mediated by emerging pollutants and its impact on aquatic carbon and nitrogen cycles.
Collapse
Affiliation(s)
- Jia Liang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xiao Tan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Imran Ali
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Zhipeng Duan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jiang Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Rui Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
3
|
Shi K, Zhao Y, Wu C, Geng Y, Zhou S, Chai B. Revealing the distribution characteristics and key driving factors of dissolved organic matter in Baiyangdian Lake inflow rivers from different seasons and sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175768. [PMID: 39191325 DOI: 10.1016/j.scitotenv.2024.175768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/23/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
The river course is a transitional area connecting the source and receiving water bodies. The dissolved organic matter (DOM) in the river course is an important factor affecting the aquatic environment and ecological health. However, there are shortcomings in studying the differences and quantitative contributions of river DOM in different seasons and sources. In this study, ultraviolet-visible (UV-vis) and three-dimensional fluorescence spectra were used to characterize the optical properties, analyze the spatiotemporal changes, and establish the quantitative relationship between environmental factors and DOM in the inflow rivers of Baiyangdian Lake. The results showed that the relative DOM concentrations in summer and autumn were significantly higher than those in the other seasons (P < 0.001) and that the DOM source (SR < 1) was mainly exogenous. The fluorescence abundance of protein-like substances (C1 + C2 + C3) was the highest in spring, whereas that of humus C4 was the highest in autumn. Moreover, the inflow rivers exhibited strong autogenetic characteristics (BIX > 1) throughout the year. Self-organizing maps (SOM) indicated that the main driving factors of water quality were NO3--N in spring, autumn, and winter and DO, pH, and chemical oxygen demand (COD) in summer. Random forest analysis showed that the fluorescent components (C1-C4) were closely related to the migration and transformation of nitrogen, and pH and nitrogen were the main predictors of each component. The Mantel test and structural equation model (SEM) showed that temperature and NO3--N significantly influenced the DOM concentration, components, and molecular properties in different seasons. Moreover, the river source also affected the distribution mechanism of DOM in the water body. Our study comprehensively analyzed the response of DOM in inflow rivers in different seasons and water sources, providing a basis for further understanding the driving mechanisms of water quality.
Collapse
Affiliation(s)
- Kun Shi
- School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yuting Zhao
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Chenbin Wu
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yuting Geng
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Shilei Zhou
- School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Beibei Chai
- Collaborative Innovation Center for Intelligent Regulation and Comprehensive Management of Water Resources, School of Water Conservancy and Hydroelectric, Hebei University of Engineering, Handan 056038, China
| |
Collapse
|
4
|
Ji G, Li K, Hou Y, Xue R, Huang K, Lv H, Huang T, Wen G. Response of dissolved organic matter and disinfection by-product precursors to algal blooms and thermal stratification in deep reservoirs. CHEMOSPHERE 2024; 368:143757. [PMID: 39549964 DOI: 10.1016/j.chemosphere.2024.143757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024]
Abstract
Algal bloom contribute substantially to dissolved organic matter (DOM) and disinfection by-product (DBP) precursors in deep reservoirs, threatening drinking water safety. However, the variations in DOM and DBP precursors in deep-water reservoirs during algal bloom remain unclear. UV and fluorescence spectroscopy and chlorination experiments were used to analyze the variations in DOM and DBP precursors during algal bloom in the Sanhekou Reservoir. Before algal bloom, the DOM and DBP precursors decreased due to biodegradation. After algal bloom, the DOM and DBP precursors increased by 48.3% and 86.9% due to algae producing protein-like compounds. Notably, the algal bloom produced a range of nitrogenous compounds that significantly promote the formation of trichloronitromethane, a major contributor to the mammalian cytotoxicity associated with DBPs. In addition, the heterogeneous matrix led to the stratification of DOM and DBP precursors. The surface water (0-5 m) was more vulnerable to algae, with protein-like components being much higher than in other layers, while humic and fulvic-like components were much lower. However, high temperatures and sufficient oxygen conditions accelerated the biodegradation of DOM and DBP precursors, resulting in significantly lower levels of DOM and DBP precursors in the surface water compared to other layers (p < 0.05). This study provides insights into the variations and the drivers in DOM and DBP precursors during algal bloom, essential for developing water intake strategies in similar water reservoirs.
Collapse
Affiliation(s)
- Gang Ji
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Kai Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yi Hou
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ruikang Xue
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Kangzhe Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - He Lv
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
5
|
Ma B, Chu M, Zhang H, Chen K, Li F, Liu X, Kosolapov DB, Zhi W, Chen Z, Yang J, Deng Y, Sekar R, Liu T, Liu X, Huang T. Mixotrophic aerobic denitrification facilitated by denitrifying bacterial-fungal communities assisted with iron in micro-polluted water: Performance, metabolic activity, functional genes abundance, and community co-occurrence. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135057. [PMID: 38943884 DOI: 10.1016/j.jhazmat.2024.135057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/08/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Low-dosage nitrate pollutants can contribute to eutrophication in surface water bodies, such as lakes and reservoirs. This study employed assembled denitrifying bacterial-fungal communities as bio-denitrifiers, in combination with zero-valent iron (ZVI), to treat micro-polluted water. Immobilized bacterial-fungal mixed communities (IBFMC) reactors demonstrated their ability to reduce nitrate and organic carbon by over 43.2 % and 53.7 %, respectively. Compared to IBFMC reactors, IBFMC combined with ZVI (IBFMC@ZVI) reactors exhibited enhanced removal efficiencies for nitrate and organic carbon, reaching the highest of 31.55 % and 17.66 %, respectively. The presence of ZVI in the IBFMC@ZVI reactors stimulated various aspects of microbial activity, including the metabolic processes, electron transfer system activities, abundance of functional genes and enzymes, and diversity and richness of microbial communities. The contents of adenosine triphosphate and electron transfer system activities enhanced more than 5.6 and 1.43 folds in the IBFMC@ZVI reactors compared with IBFMC reactors. Furthermore, significant improvement of crucial genes and enzyme denitrification chains was observed in the IBFMC@ZVI reactors. Iron played a central role in enhancing microbial diversity and activity, and promoting the supply, and transfer of inorganic electron donors. This study presents an innovative approach for applying denitrifying bacterial-fungal communities combined with iron enhancing efficient denitrification in micro-polluted water.
Collapse
Affiliation(s)
- Ben Ma
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mengting Chu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Kaige Chen
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Fengrui Li
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Dmitry B Kosolapov
- Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences (IBIW RAS), 109, Borok, Nekouz, Yaroslavl 152742, Russia
| | - Wei Zhi
- Department of Civil and Environmental Engineering, the Pennsylvania State University, USA
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, Praha 16500, Czech Republic
| | - Jun Yang
- Aquatic EcoHealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Ye Deng
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China; CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China, University of Chinese Academy of Sciences, Beijing, China
| | - Raju Sekar
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Tao Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaoyan Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
6
|
Liu Y, Li M, Ren D, Li Y. Spatial distribution of sediment dissolved organic matter in oligotrophic lakes and its binding characteristics with Pb(II) and Cu(II). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43369-43380. [PMID: 38902445 DOI: 10.1007/s11356-024-34043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Dissolved organic matter (DOM), the most active component in interstitial waters, determines the stability of heavy metals and secondary release in sediments. However, little is known about the composition and metal-binding patterns of DOM in interstitial water from oligotrophic lakes affected by different anthropogenic perturbations. Here, 18 interstitial water samples were prepared from sediments in agricultural, residential, tourist, and forest regions in an oligotrophic lake (Shengzhong Lake in Sichuan Province, China) watershed. Interstitial water quality and DOM composition, properties, and Cu(II)- and Pb(II)-binding characteristics were measured via physicochemical analysis, UV-vis spectroscopic, fluorescence excitation-emission matrix-parallel factor analysis (EEM-PARAFAC), and fluorescence titration methods. The DOM, which was produced mainly by microbial activities, had low molecular weights, humification degrees, and aromaticity. Based on EEM-PARAFAC results, the DOM was generally composed of tryptophan- (57.7%), terrestrial humic- (18.7%), microbial humic- (15.6%), and tyrosine-like (8.0%) substances. The DOM in the metal complexes was primarily composed of tryptophan-like substances, which accounted for ~42.6% of the DOM-Cu(II) complexes and ~72.0% of the DOM-Pb(II) complexes; however, microbial humic-like substances primarily contributed to the stability of DOM-Cu(II) (logKCu = 3.7-4.6) and DOM-Pb(II) (logKPb = 4.3-4.8). Water quality parameters did not significantly affect the stability of DOM-metal complexes. We demonstrated that the metal-binding patterns of DOM in interstitial water from oligotrophic lakes are highly dependent on microbial DOM composition and are affected by anthropogenic perturbations to a lesser extent.
Collapse
Affiliation(s)
- Yanmei Liu
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
| | - Mengyuan Li
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
| | - Dong Ren
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
- Nanchong Key Laboratory of Eco-Environmental Protection and Pollution Prevention in Jialing River Basin, Nanchong, 637000, China
| | - Yunxiang Li
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China.
| |
Collapse
|
7
|
Zhang Z, Wu C, Di Y, Zhang J, Chai B, Zhou S. Identification and relative contributions of environmental driving factors for abundant and rare bacterial taxa to thermal stratification evolution. ENVIRONMENTAL RESEARCH 2023; 232:116424. [PMID: 37327840 DOI: 10.1016/j.envres.2023.116424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/28/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
The thermal stratification of reservoir affects water quality, and water quality evolution is largely driven by microorganisms. However, few studies have been conducted on the response of abundant taxa (AT) and rare taxa (RT) to thermal stratification evolution in reservoirs. Here, using high-throughput absolute quantitative techniques, we examined the classification, phylogenetic diversity patterns, and assembly mechanisms of different subcommunities during different periods and investigated the key environmental factors driving community construction and composition. The results showed that community and phylogenic distances of RT were higher than AT (P < 0.001), and community and phylogenic distances of the different subcommunities were significantly positively correlated with the dissimilarity of environmental factors (P < 0.001). Nitrate (NO3--N) was the main driving factor of AT and RT in the water stratification period, and Mn was the main driving factor in the water mixing period (MP) based on redundancy analysis (RDA) and random forest analysis (RF). The interpretation rate of key environmental factors based on the selected indicator species in RT by RF was higher than that of AT, and Xylophilus (10.5%) and Prosthecobacter (0.1%) had the highest average absolute abundance in AT and RT during the water stable stratification period (SSP), whereas Unassigned had the highest abundance during the MP and weak stratification period (WSP). The network of RT and environmental factors was more stable than that of AT, and stratification made the network more complex. NO3--N was the main node of the network during the SSP, and manganese (Mn) was the main node during the MP. Dispersal limitation dominated community aggregation, the proportion of AT was higher than that of RT. Structural Equation Model (SEM) showed that NO3--N and temperature (T) had the highest direct and total effects on β-diversity of AT and RT for the SP and MP, respectively.
Collapse
Affiliation(s)
- Ziwei Zhang
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| | - Chenbin Wu
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| | - Yiling Di
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| | - Jiafeng Zhang
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| | - Beibei Chai
- Hebei Collaborative Innovation Center for the Regulation and Comprehensive Management of Water Resources and Water Environment, Hebei University of Engineering, Handan, 056038, PR China
| | - Shilei Zhou
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China.
| |
Collapse
|
8
|
de Melo MC, Fernandes LFS, Pissarra TCT, Valera CA, da Costa AM, Pacheco FAL. The COP27 screened through the lens of global water security. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162303. [PMID: 36805064 DOI: 10.1016/j.scitotenv.2023.162303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/29/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Water security is an expression of resilience. In the recent past, scientists and public organizations have built considerable work around this concept launched in 2013 by the United Nations as "the capacity of a population to safeguard sustainable access to adequate quantities of acceptable quality water for sustaining livelihoods, human well-being, and socio-economic development, for ensuring protection against water-borne pollution and water-related disasters, and for preserving ecosystems in a climate of peace and political stability". In the 27th Conference of the Parties (COP27), held in Sharm El-Sheikh (Egypt) in last November, water security was considered a priority in the climate agenda, especially in the adaption and loss and damage axes. This discussion paper represents the authors' opinion about how the conference coped with water security and what challenges remain to attend. As discussion paper, it had the purpose to stimulate further discussion in a broader scientific forum.
Collapse
Affiliation(s)
- Marília Carvalho de Melo
- Secretaria de Estado de Meio Ambiente e Desenvolvimento Sustentável, Cidade Administrativa do Estado de Minas Gerais, Rodovia João Paulo II, 4143, Bairro Serra Verde, Belo Horizonte, Minas Gerais, Brazil; Universidade Vale do Rio Verde (UNINCOR), Av. Castelo Branco, 82 - Chácara das Rosas, Três Corações, MG 37417-150, Brazil.
| | - Luís Filipe Sanches Fernandes
- Centro de Investigação e Tecnologias Agroambientais e Biológicas (CITAB), Universidade de Trás-os-Montes e Alto Douro (UTAD), Ap. 1013, 5001-801 Vila Real, Portugal.
| | - Teresa Cristina Tarlé Pissarra
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP 14884-900, Brazil.
| | - Carlos Alberto Valera
- Coordenadoria Regional das Promotorias de Justiça do Meio Ambiente das Bacias dos Rios Paranaíba e Baixo Rio Grande, Rua Coronel Antônio Rios, 951, Uberaba, MG 38061-150, Brazil.
| | - Adriana Monteiro da Costa
- Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6620, Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Fernando António Leal Pacheco
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, SP 14884-900, Brazil; Centro de Química de Vila Real (CQVR), Universidade de Trás-os-Montes e Alto Douro (UTAD), Ap. 1013, 5001-801 Vila Real, Portugal.
| |
Collapse
|
9
|
Ma B, Niu L, Li N, Pan S, Li A, Chu M, Liu H, Kosolapov DB, Xin X, Zhi W, Hou L, Chen Z, Zhang Y, Cao S, Huang T, Zhang H. Promoted aerobic denitrification through denitrifying fungal communities: Co-occurrence patterns and treatment of low C/N micro-polluted water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163859. [PMID: 37142031 DOI: 10.1016/j.scitotenv.2023.163859] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Despite the growing interest in using mixed-culture aerobic denitrifying fungal flora (mixed-CADFF) for water remediation, there is limited research on their nitrogen removal performance in low C/N polluted water bodies. To address this knowledge gap, we isolated three mixed-CADFFs from overlying water in urban lakes to evaluate their removal performance. The total nitrogen (TN) removal efficiencies were 93.60 %, 94.64 %, and 95.18 %, while the dissolved organic carbon removal efficiencies were 96.64 %, 95.12 %, and 96.70 % for mixed-CADFF LN3, LN7, and LN15, respectively in the denitrification medium under aerobic conditions at 48 h cultivation. The three mixed-CADFFs could utilize diverse types of low molecular weight carbon sources to drive the aerobic denitrification processes efficiently. The optimal C/N ratio for the mixed-CADFFs were C/N = 10, and then C/N = 15, 7, 5, and 2. The high-throughput sequencing analysis of three mixed-CADFFs indicated that Eurotiomycetes, Cystobasidiomycetes, and Sordariomycetes were the dominant class in the communities at class level. The network analysis showed that the rare fungal species, such as Scedosporium dehoogii Saitozyma, and Candida intermedia presented positively co-occurred with the TN removal and organic matter reduction capacity. Immobilization mixed-CADFFs treatment raw water experiments indicated that three mixed-CADFFs could reduce nearly 62.73 % of TN in the low C/N micro-polluted raw water treatment. Moreover, the cell density and cell metabolism indexes were also increased during the raw water treatment. This study will provides new insight into resource utilization of the mixed-culture aerobic denitrifying fungal community in field of environment restoration.
Collapse
Affiliation(s)
- Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Limin Niu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Nan Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sixuan Pan
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Anyi Li
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mengting Chu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Huan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Dmitry B Kosolapov
- Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences (IBIW RAS), 109, Borok, Nekouz, Yaroslavl 152742, Russia
| | - Xiaying Xin
- Department of Civil Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Wei Zhi
- Department of Civil and Environmental Engineering, the Pennsylvania State University, USA
| | - Liyuan Hou
- Civil and Environmental Engineering Department, Utah State University, Logan, UT 84322, USA
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol 16500, Czech Republic
| | - Yinbin Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Shumiao Cao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
10
|
Zhang T, Chen Z, Zhang Z, Zhou S, Meng J, Chen Z, Zhang J, Cui J, Chai B. Spatial and temporal dynamic response of abundant and rare aerobic denitrifying bacteria to dissolved organic matter in natural water: A case study of Lake Baiyangdian, China. ENVIRONMENTAL RESEARCH 2023; 224:115524. [PMID: 36813068 DOI: 10.1016/j.envres.2023.115524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Revealing the responses of abundant and rare aerobic denitrifying bacteria to dissolved organic matter (DOM) composition is essential for understanding the aquatic N cycle ecosystems. In this study, fluorescence region integration and high-throughput sequencing techniques were used to investigate the spatiotemporal characteristics and dynamic response of DOM and aerobic denitrifying bacteria. The DOM compositions were significantly different among the four seasons (P < 0.001) without spatial differences. Tryptophan-like substances (P2, 27.89-42.67%) and microbial metabolites (P4, 14.62-42.03%) were the dominant components, and DOM exhibited strong autogenous characteristics. Abundant (AT), moderate (MT), and rare taxa (RT) of aerobic denitrifying bacteria showed significant and spatiotemporal differences (P < 0.05). The responses of α-diversity and niche breadth of AT and RT to DOM differed. The DOM explanation proportion for aerobic denitrifying bacteria exhibited spatiotemporal differences based on redundancy analysis. Foliate-like substances (P3) had the highest interpretation rate of AT in spring and summer, while humic-like substances (P5) had the highest interpretation rate of RT in spring and winter. Network analysis showed that RT networks were more complex than AT networks. Pseudomonas was the main genus associated with DOM in AT on a temporal scale, and was more strongly correlated with tyrosine-like substances (P1), P2, and P5. Aeromonas was the main genus associated with DOM in AT on a spatial scale and was more strongly correlated with P1 and P5. Magnetospirillum was the main genus associated with DOM in RT on a spatiotemporal scale, which was more sensitive to P3 and P4. Special operational taxonomic units were transformed between AT and RT with seasonal changes, but not between the two regions. To summarize, our results revealed that bacteria with different abundances utilized DOM components differently, and provides new insight on the spatiotemporal response of DOM and aerobic denitrifying bacteria in aquatic ecosystems of biogeochemical significance.
Collapse
Affiliation(s)
- Tianna Zhang
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| | - Zhaoying Chen
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| | - Ziwei Zhang
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| | - Shilei Zhou
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China.
| | - Jiajing Meng
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| | - Zhe Chen
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| | - Jiafeng Zhang
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| | - Jiansheng Cui
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, PR China
| | - Beibei Chai
- Hebei Collaborative Innovation Center for the Regulation and Comprehensive Management of Water Resources and Water Environment, Hebei University of Engineering, Handan, 056038, PR China
| |
Collapse
|