1
|
Han Z, Fei S, Sun F, Dong F, Xiao X, Shen C, Su X. Enhanced microbial dechlorination of PCBs by anaerobic digested sludge and enrichment of low-abundance PCB dechlorinators. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136376. [PMID: 39500182 DOI: 10.1016/j.jhazmat.2024.136376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/15/2024] [Accepted: 10/30/2024] [Indexed: 12/01/2024]
Abstract
The slow rate of anaerobic microbial dechlorination in natural environments limits the application of polychlorinated biphenyl (PCB) bioremediation. Anaerobic digested sludge (ADS), abundant in nutrients and microorganisms, could be an effective additive to improve microbial dechlorination. This research investigates the influence of ADS on Aroclor 1260 dechlorination performance, microbial community composition, and the abundance of functional genes. Moreover, further enrichment of organohalide-respiring bacteria (OHRB) was examined using tetrachloroethene (PCE) as the electron acceptor, followed by the serial dilution-to-extinction method in conjunction with resuscitation promoting factor (Rpf) supplementation. The results demonstrated that the addition of 5 g/L ADS achieved more extensive and efficient dechlorination of PCBs. ADS enhanced the removal of meta- and para-chlorine without significantly changing the dechlorination pathways. The abundances of dechlorinators, including Dehalobium and Dehalobacter within the Chloroflexi and Firmicutes phyla, as well as non-dechlorinators from the Desulfobacterota, Euryarchaeota, and Bacteroidetes phyla, were significantly increased with ADS amendment. Similarly, an increased abundance of bacteria, OHRB, reductive dehalogenase (RDase) genes, and archaeal 16S rRNA genes was observed. Additionally, obligate OHRB, such as Dehalobacter and Dehalobium, were further enriched. These findings indicate that ADS effectively enhances microbial reductive dechlorination and highlight the potential for enriching and isolating OHRB with Rpf.
Collapse
Affiliation(s)
- Zhen Han
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Sijia Fei
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Feng Dong
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xiao Xiao
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
2
|
Lin Q, Yang Y, Zhang S, Sun F, Shen C, Su X. Enhanced biodegradation of polychlorinated biphenyls by co-cultivation of resuscitated strains with unique advantages. ENVIRONMENTAL RESEARCH 2024; 261:119699. [PMID: 39074776 DOI: 10.1016/j.envres.2024.119699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
The investigation into viable but non-culturable (VBNC) bacteria through the implementation of resuscitation promoting factors (Rpfs) has broadened the potential sources for isolating strains capable of degrading polychlorinated biphenyls (PCBs). Nonetheless, there has been limited research on the efficacy of resuscitated strains and the potential improvement of their performance through co-cultivation. In this work, the PCB degradation potential of resuscitated strains, specifically Pseudomonas sp. HR1 and Achromobacter sp. HR2, as well as their co-cultures, was investigated. Of particular importance was the comparative analysis between the optimal co-culture and individual strains regarding their ability to degrade PCB homologs and mineralize intermediate metabolites. The results suggested that the resuscitated strains HR1 and HR2 demonstrated robust growth and effective degradation of Aroclor 1242. The co-culture CO13, with an optimal HR1 to HR2 ratio of 1:3, exhibited a remarkable improvement in PCB degradation and intermediate metabolite mineralization compared to individual strains. Analysis of functional genes and degradation metabolites revealed that both the individual strains and co-culture CO13 degraded PCBs via the HOPDA-benzoate pathway, then mineralized through protocatechuate meta- and ortho-cleavage pathways, as well as the catechol ortho-cleavage pathway. This study represents the first documentation of the improved PCB degradation through the co-cultivation of resuscitated strains, which highlights the great promise of these resuscitated strains and their co-cultures as effective bio-inoculants for enhanced bioremediation.
Collapse
Affiliation(s)
- Qihua Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Yingying Yang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Shusheng Zhang
- The Management Center of Wuyanling National Natural Reserve in Zhejiang, Wenzhou, 325500, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
3
|
Rong Q, Lu D, Zhong K, Yang S, Li Z, Zhang C. Mechanism of antimony oxidation and adsorption using immobilized Klebsiella aerogenes HC10 in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177404. [PMID: 39510282 DOI: 10.1016/j.scitotenv.2024.177404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/19/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
Klebsiella aerogenes HC10 is one of the few strains isolated from contaminated soil that efficiently oxidizes Sb. However, the sensitivity of microorganisms to environmental conditions limits Sb-oxidizing bacteria applications in soil remediation. Immobilizing Sb-oxidizing bacteria is a promising strategy to improve colonization rates and microorganism inefficiencies and to strengthen bioremediation in Sb-contaminated soil. This study evaluated the feasibility of an immobilization approach to enhance Sb oxidation and the remediation performance of strain HC10 in soil. The results indicated that a mixed matrix of polyvinyl alcohol and sodium alginate as fixed carriers provided a porous microstructural environment conducive to HC10 colonization and proliferation. Sb(III) concentration was reduced by 9.8 mg/L. The total Sb decreased by 3.8 mg/L by immobilized HC10 after 7 d. Key metabolites involved in Sb oxidation and adsorption were significantly upregulated. In soil, immobilized HC10 removed 48.68 % and 61.74 % of water-extractable and citric acid-extractable Sb(III), respectively. Some well-crystallized (hydr)oxide Sb fractions binding to the mineral surface were transformed into the mineral lattice form, creating an inner-sphere complex that effectively immobilized Sb. Immobilized HC10 enhanced hydrogen peroxidase, urease, and sucrase activities related to soil antioxidants and nutrient cycling. Immobilized HC10 promoted the proliferation of indigenous bacteria, which emerged as the dominant bacterial community with the potential for Sb oxidation. The ars operon genes associated with Sb resistance and transport were significantly expressed in HC10 treatments, providing a crucial basis for colonization in the soil. These results highlight the potential of immobilized Sb-oxidizing bacteria for enhanced bioremediation of Sb-contaminated soil.
Collapse
Affiliation(s)
- Qun Rong
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; College of agriculture, Guangxi University, Nanning 530004, China; School of Environment and Life Science, Nanning Normal University, Nanning 530001, China
| | - Dingtian Lu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Kai Zhong
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Shu Yang
- College of agriculture, Guangxi University, Nanning 530004, China
| | - Zhongyi Li
- Agricultural Resources and Environmental Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Arable Land Conservation, China.
| | - Chaolan Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| |
Collapse
|
4
|
Hou A, Fu H, Liu L, Su X, Zhang S, Lai J, Sun F. Exploring the distribution and co-occurrence of rpf-like genes and nitrogen-cycling genes in water reservoir sediments. Front Microbiol 2024; 15:1433046. [PMID: 39104579 PMCID: PMC11298755 DOI: 10.3389/fmicb.2024.1433046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/12/2024] [Indexed: 08/07/2024] Open
Abstract
Water reservoir sediments represent a distinct habitat that harbors diverse microbial resources crucial for nitrogen cycling processes. The discovery of resuscitation promoting factor (Rpf) has been recognized as a crucial development in understanding the potential of microbial populations. However, our understanding of the relationship between microorganisms containing rpf-like genes and nitrogen-cycling functional populations remains limited. The present study explored the distribution patterns of rpf-like genes and nitrogen-cycling genes in various water reservoir sediments, along with their correlation with environmental factors. Additionally, the co-occurrence of rpf-like genes with genes associated with the nitrogen cycle and viable but non-culturable (VBNC) formation was investigated. The findings indicated the ubiquitous occurrence of Rpf-like domains and their related genes in the examined reservoir sediments. Notably, rpf-like genes were predominantly associated with Bradyrhizobium, Nitrospira, and Anaeromyxobacter, with pH emerging as the primary influencing factor for their distribution. Genera such as Nitrospira, Bradyrhizobium, Anaeromyxobacter, and Dechloromonas harbor the majority of nitrogen-cycling functional genes, particularly denitrification genes. The distribution of nitrogen-cycling microbial communities in the reservoir sediments was mainly influenced by pH and NH4 +. Notably, correlation network analysis revealed close connections between microorganisms containing rpf-like genes and nitrogen-cycling functional populations, as well as VBNC bacteria. These findings offer new insights into the prevalence of rpf-like genes in the water reservoir sediments and their correlation with nitrogen-cycling microbial communities, enhancing our understanding of the significant potential of microbial nitrogen cycling.
Collapse
Affiliation(s)
- Aiqin Hou
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, China
| | - Huayi Fu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, China
| | - Leilei Liu
- The Management Center of Wuyanling National Natural Reserve in Zhejiang, Wenzhou, China
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, China
| | - Shusheng Zhang
- The Management Center of Wuyanling National Natural Reserve in Zhejiang, Wenzhou, China
| | - Jiahou Lai
- The Management Center of Wuyanling National Natural Reserve in Zhejiang, Wenzhou, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
5
|
Kou L, Chen H, Zhang X, Liu S, Zhang B, Zhu H, Du Z. Enhanced degradation of phthalate esters (PAEs) by biochar-sodium alginate immobilised Rhodococcus sp. KLW-1. ENVIRONMENTAL TECHNOLOGY 2024; 45:3367-3380. [PMID: 37191443 DOI: 10.1080/09593330.2023.2215456] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023]
Abstract
In this study, a new strain of bacteria, named Rhodococcus sp. KLW-1, was isolated from farmland soil contaminated by plastic mulch for more than 30 years. To improve the application performance of free bacteria and find more ways to use waste biochar, KLW-1 was immobilised on waste biochar by sodium alginate embedding method to prepare immobilised pellet. Response Surface Method (RSM) predicted that under optimal conditions (3% sodium alginate, 2% biochar and 4% CaCl2), di (2-ethylhexyl) phthalate (DEHP) degradation efficiency of 90.48% can be achieved. Under the adverse environmental conditions of pH 5 and 9, immobilisation increased the degradation efficiency of 100 mg/L DEHP by 16.42% and 11.48% respectively, and under the high-stress condition of 500 mg/L DEHP concentration, immobilisation increased the degradation efficiency from 71.52% to 91.56%, making the immobilised pellets have strong stability and impact load resistance to environmental stress. In addition, immobilisation also enhanced the degradation efficiency of several phthalate esters (PAEs) widely existing in the environment. After four cycles of utilisation, the immobilised particles maintained stable degradation efficiency for different PAEs. Therefore, immobilised pellets have great application potential for the remediation of the actual environment.
Collapse
Affiliation(s)
- Liangwei Kou
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, People's Republic of China
| | - Hanyu Chen
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, People's Republic of China
| | - Xueqi Zhang
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, People's Republic of China
| | - Shaoqin Liu
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, People's Republic of China
| | - Baozhong Zhang
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, People's Republic of China
| | - Huina Zhu
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, People's Republic of China
| | - Zhimin Du
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, People's Republic of China
- Henan International Joint Laboratory of Environmental Pollution, Remediation and Grain Quality Security, Zhengzhou, People's Republic of China
| |
Collapse
|
6
|
Lv L, Chen J, Wei Z, Hao P, Wang P, Liu X, Gao W, Sun L, Liang J, Ren Z, Zhang G, Li W. A new strategy for accelerating recovery of anaerobic granular sludge after low-temperature shock: In situ regulation of quorum sensing microorganisms embedded in polyvinyl alcohol sodium alginate. BIORESOURCE TECHNOLOGY 2024; 401:130709. [PMID: 38636877 DOI: 10.1016/j.biortech.2024.130709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Low-temperature could inhibit the performance of anaerobic granular sludge (AnGS). Quorum sensing (QS), as a communication mode between microorganisms, can effectively regulate AnGS. In this study, a kind of embedded particles (PVA/SA@Serratia) based on signal molecule secreting bacteria was prepared by microbial immobilization technology based on polyvinyl alcohol and sodium alginate to accelerate the recovery of AnGS system after low temperature. Low-temperature shock experiment verified the positive effect of PVA/SA@Serratia on restoring the COD removal rate and methanogenesis capacity of AnGS. Further analysis by metagenomics analysis showed that PVA/SA@Serratia stimulated higher QS activity and promoted the secretion of extracellular polymeric substance (EPS) in AnGS. The rapid construction of EPS protective layer effectively accelerated the establishment of a robust microbial community structure. PVA/SA@Serratia also enhanced multiple methanogenic pathways, including direct interspecies electron transfer. In conclusion, this study demonstrated that PVA/SA@Serratia could effectively strengthen AnGS after low-temperature shock.
Collapse
Affiliation(s)
- Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Jiarui Chen
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Ziyin Wei
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Peng Hao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Pengfei Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Xiaoyang Liu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Wenfang Gao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Li Sun
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Jinsong Liang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Zhijun Ren
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China.
| |
Collapse
|
7
|
Shi J, Zhou X, Zhang S, Sun F, Shen C, Su X. Unveiling the distribution characteristics of rpf-like genes and indigenous resuscitation promoting factor production in PCB-contaminated soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120803. [PMID: 38569268 DOI: 10.1016/j.jenvman.2024.120803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/17/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Resuscitation promoting factors (Rpfs), known for their anti-dormancy cytokine properties, have been extensively investigated in the medical field. Although the Rpf from Micrococcus luteus has been successfully utilized to resuscitate and stimulate microbial populations for the degradation of polychlorinated biphenyls (PCBs), the presence of indigenous Rpf homologs in PCB-contaminated soils has not been established. In this study, the distribution characteristics of rpf-like genes and indigenous strain capable of producing Rpf in PCB-contaminated soils were explored. The results revealed the widespread presence of Rpf-like domains and their associated genes, particularly in close association with heavy metals and PCBs. The rpf-like genes were predominantly found in Proteobacteria and displayed a positive correlation with genes involved in PCB degradation and viable but non-culturable (VBNC) formation. Notably, the recombinant Rpf-Ac protein derived from the indigenous strain Achromobacter sp. HR2 exhibited muralytic activity and demonstrated significant efficacy in resuscitating the growth of VBNC cells, while also stimulating the growth of normal cells. These findings shed light on the prevalent presence of Rpf homologs in PCB-contaminated soils and their potential to resuscitate functional populations in the VBNC state, thereby enhancing in situ bioremediation.
Collapse
Affiliation(s)
- Jie Shi
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Xinru Zhou
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Shusheng Zhang
- The Management Center of Wuyanling National Natural Reserve in Zhejiang, Wenzhou, 325500, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
8
|
Shi J, Yang Y, Zhang S, Lin Q, Sun F, Lin H, Shen C, Su X. New insights into survival strategies and PCB bioremediation potential of resuscitated strain Achromobacter sp. HR2 under combined stress conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133242. [PMID: 38103289 DOI: 10.1016/j.jhazmat.2023.133242] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
The resuscitated strains achieved through the addition of resuscitation promoting factor (Rpf) hold significant promise as bio-inoculants for enhancing the bioremediation of polychlorinated biphenyls (PCBs). Nevertheless, the potential of these resuscitated strains to transition into a viable but non-culturable (VBNC) state, along with the specific stressors that initiate this transformation, remains to be comprehensively elucidated. In this study, a resuscitated strain HR2, obtained through Rpf amendment, was employed to investigate its survival strategies under combined stress involving low temperature (LT), and PCBs, in the absence and presence of heavy metals (HMs). Whole-genome analysis demonstrated that HR2, affiliated with Achromobacter, possessed 107 genes associated with the degradation of polycyclic aromatic compounds. Remarkably, HR2 exhibited effective degradation of Aroclor 1242 and robust resistance to stress induced by LT and PCBs, while maintaining its culturability. However, when exposed to the combined stress of LT, PCBs, and HMs, HR2 entered the VBNC state. This state was characterized by significant decreases in enzyme activities and notable morphological, physiological, and molecular alterations compared to normal cells. These findings uncovered the survival status of resuscitated strains under stressful conditions, thereby offering valuable insights for the development of effective bioremediation strategies.
Collapse
Affiliation(s)
- Jie Shi
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yingying Yang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Shusheng Zhang
- The Management Center of Wuyanling National Natural Reserve in Zhejiang, Wenzhou 325500, China
| | - Qihua Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
9
|
Yang Y, Zhang Q, Lin Q, Sun F, Shen C, Lin H, Su X. Unveiling the PCB biodegradation potential and stress survival strategies of resuscitated strain Pseudomonas sp. HR1. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123320. [PMID: 38185359 DOI: 10.1016/j.envpol.2024.123320] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
The exploration of resuscitated strains, facilitated by the resuscitation promoting factor (Rpf), has substantially expanded the pool of cultivated degraders, enhancing the screening of bio-inoculants for bioremediation applications. However, it remains unknown whether these resuscitated strains can re-enter the viable but non-culturable (VBNC) state and the specific stress conditions that trigger such a transition. In this work, the whole genome, and polychlorinated biphenyl (PCB)-degrading capabilities of a resuscitated strain HR1, were investigated. Notably, the focus of this exploration was on elucidating whether HR1 would undergo a transition into the VBNC state when exposed to low temperature and PCBs, with and without the presence of heavy metals (HMs). The results suggested that the resuscitated strain Pseudomonas sp. HR1 harbored various functional genes related to xenobiotic biodegradation, demonstrating remarkable efficiency in Aroclor 1242 degradation and strong resistance against stress induced by low temperature and PCBs. Nevertheless, when exposed to the combined stress of low temperature, PCBs, and HMs, HR1 underwent a transition into the VBNC state. This transition was characterized by significant decreases in enzyme activities and notable changes in both morphological and physiological traits when compared to normal cells. Gene expression analysis revealed molecular shifts underlying the VBNC state, with down-regulated genes showed differential expression across multiple pathways and functions, including oxidative phosphorylation, glycolysis, tricarboxylic acid cycle, amino acid metabolism, translation and cytoplasm, while up-regulated genes predominantly associated with transcription regulation, membrane function, quorum sensing, and transporter activity. These findings highlighted the great potential of resuscitated strains as bio-inoculants in bioaugmentation and shed light on the survival mechanisms of functional strains under stressful conditions, which should be carefully considered during bioremediation processes.
Collapse
Affiliation(s)
- Yingying Yang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Qian Zhang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Qihua Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hongjun Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
10
|
Han Z, Hou A, Cai X, Xie M, Sun F, Shen C, Lin H, Yu H, Su X. Unlocking the potential of resuscitation-promoting factor for enhancing anaerobic microbial dechlorination of polychlorinated biphenyls. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165440. [PMID: 37437637 DOI: 10.1016/j.scitotenv.2023.165440] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Microbial dechlorination of polychlorinated biphenyls (PCBs) is limited by the slow growth rate and low activity of dechlorinators. Resuscitation promoting factor (Rpf) of Micrococcus luteus, has been demonstrated to accelerate the enrichment of highly active PCB-dechlorinating cultures. However, it remains unclear whether the addition of Rpf can further improve the dechlorination performance of anaerobic dechlorination cultures. In this study, the effect of Rpf on the performance of TG4, an enriched PCB-dechlorinating culture obtained by Rpf amendment, for reductive dechlorination of four typical PCB congeners (PCBs 101, 118, 138, 180) was evaluated. The results indicated that Rpf significantly enhanced the dechlorination of the four PCB congeners, with residual mole percentages of PCBs 101, 118, 138 and 180 in Rpf-amended cultures being 16.2-29.31 %, 13.3-20.1 %, 11.9-14.4 % and 9.4-17.3 % lower than those in the corresponding cultures without Rpf amendment after 18 days of incubation. Different models were identified as appropriate for elucidating the dechlorination kinetics of distinct PCB congeners, and it was observed that the dechlorination rate constant is significantly influenced by the PCB concentration. The supplementing Rpf did not obviously change dechlorination metabolites, and the removal of chlorines occurred mainly at para- and meta- positions. Analysis of microbial community and functional gene abundance suggested that Rpf-amended cultures exhibited a significant enrichment of Dehalococcoides, Dehalogenimonas and Desulfitobacterium, as well as non-dechlorinators belonging to Desulfobacterota and Bacteroidetes. These findings highlight the potential of Rpf as an effective additive for enhancing PCB dechlorination, providing new insights into the survival of functional microorganisms involved in anaerobic reductive dechlorination.
Collapse
Affiliation(s)
- Zhen Han
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Aiqin Hou
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaolin Cai
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Mengqi Xie
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongjun Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Haiying Yu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
11
|
Atakpa EO, Zhou H, Jiang L, Zhang D, Li Y, Zhang W, Zhang C. Co-culture of Acinetobacter sp. and Scedosporium sp. immobilized beads for optimized biosurfactant production and degradation of crude oil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122365. [PMID: 37572849 DOI: 10.1016/j.envpol.2023.122365] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023]
Abstract
The widespread exploration and exploitation of crude oil has increased the prevalence of petroleum hydrocarbon pollution in the marine and coastal environment. Bioremediation of petroleum hydrocarbons using cell immobilization techniques is gaining increasing attention. In this study, the crude oil degradation performance of bacterial and fungal co-culture was optimized by entrapping both cells in sodium-alginate and polyvinyl alcohol composite beads. Results indicate that fungal cells remained active after entrapment and throughout the experiment, while bacterial cells were non-viable at the end of the experimental period in treatments with the bacterial-fungal ratio of 1:2. A remarkable decrease in surface tension from 72 mN/m to 36.51 mN/m was achieved in treatments with the bacterial-fungal ratio of 3:1. This resulted in a significant (P < 0.05) total petroleum hydrocarbon (TPH) removal rate of 89.4%, and the highest degradation of n-alkanes fractions (from 2129.01 mg/L to 118.53 mg/L), compared to the other treatments. Whereas PAHs removal was highest in treatments with the most fungal abundance (from 980.96 μg/L to 177.3 μg/L). Furthermore, enzymes analysis test revealed that catalase had the most effect on microbial degradation of the target substrate, while protease had no significant impact on the degradation process. High expression of almA and PAH-RHDa genes was achieved in the co-culture treatments, which correlated significantly (P < 0.05) with n-alkanes and PAHs removal, respectively. These results indicate that the application of immobilized bacterial and fungal cells in defined co-culture systems is an effective strategy for enhanced biodegradation of petroleum hydrocarbons in aqueous systems.
Collapse
Affiliation(s)
- Edidiong Okokon Atakpa
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Hanghai Zhou
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Lijia Jiang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Dongdong Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
| | - Yanhong Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Wenjie Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Chunfang Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China.
| |
Collapse
|
12
|
Zhang M, Yang Y, Mou H, Pan A, Su X, Chen J, Lin H, Sun F. Enhanced methane yield in anaerobic digestion of waste activated sludge by combined pretreatment with fungal mash and free nitrous acid. BIORESOURCE TECHNOLOGY 2023; 385:129441. [PMID: 37399961 DOI: 10.1016/j.biortech.2023.129441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
This study explores a novel approach for enhancing anaerobic digestion of waste activated sludge (WAS) through the combined pretreatment of fungal mash and free nitrous acid (FNA). Aspergillus PAD-2, a fungal strain with superior hydrolase secretion, was isolated from WAS and cultivated in-situ on food waste to produce fungal mash. The solubilization of WAS by fungal mash achieved a high soluble chemical oxygen demand release rate of 548 mg L-1 h-1 within first 3 h. The combined pretreatment of fungal mash and FNA further improved the sludge solubilization by 2-fold and resulted in a doubled methane production rate of 416±11 mL CH4 g-1 volatile solids. The Gompertz model analysis revealed a higher maximum specific methane production rate and shortened lag time by the combined pretreatment. These results demonstrate that the combined fungal mash and FNA pretreatment offers a promising alternative for fast anaerobic digestion of WAS.
Collapse
Affiliation(s)
- Min Zhang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yuwei Yang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Huaqian Mou
- Jinhua Water Treatment Co. Ltd., Jinhua 321017, China
| | - Aodong Pan
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Jianrong Chen
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Environmental Pollution Control Technology Research of Zhejiang Province, Eco-environmental Science Research & Design Institute of Zhejiang Province, Hangzhou, Zhejiang 310007, China.
| |
Collapse
|
13
|
Wang R, An Z, Fan L, Zhou Y, Su X, Zhu J, Zhang Q, Chen C, Lin H, Sun F. Effect of quorum quenching on biofouling control and microbial community in membrane bioreactors by Brucella sp. ZJ1. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117961. [PMID: 37075636 DOI: 10.1016/j.jenvman.2023.117961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/01/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Quorum quenching (QQ) has been demonstrated to be a novel technique for controlling biofouling in membrane bioreactors (MBRs), as it can significantly inhibit biofilm formation by disrupting quorum sensing (QS). The exploration of new QQ bacterial strains and the evaluation of their performance in mitigating membrane fouling in MBR systems is significant. In this study, an efficient QQ strain, Brucella sp. ZJ1 was encapsulated in alginate beads and evaluated for its ability to mitigate biofouling. The findings revealed that MBR with QQ beads extended the operation time by 2-3 times without affecting pollutant degradation. QQ beads maintained approximately 50% QQ activity after more than 50 days operation, indicating a long-lasting and endurable QQ effect. The QQ effect reduced extracellular polymeric substance (EPS) production especially in terms of polysaccharide and protein by more than 40%. QQ beads in the MBR also reduced the cake resistance and the irreversible resistance of membrane biofouling. Metagenomic sequencing suggests that QQ beads suppressed the QS effect and increased the abundance of QQ enzyme genes, ultimately inducing efficient membrane biofouling control.
Collapse
Affiliation(s)
- Rui Wang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China; Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Zijing An
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Lu Fan
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Yan Zhou
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Junjie Zhu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Qian Zhang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Chongjun Chen
- Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Hongjun Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, China; Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
14
|
Wang G, Chen M, Jiang L, Zhang Y. Nitenpyram biodegradation by a novel nitenpyram-degrading bacterium, Ochrobactrum sp. strain DF-1, and its novel degradation pathway. Front Microbiol 2023; 14:1209322. [PMID: 37520376 PMCID: PMC10373928 DOI: 10.3389/fmicb.2023.1209322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/21/2023] [Indexed: 08/01/2023] Open
Abstract
Nitenpyram is a neonicotinoid insecticide that is commonly found in the environment. However, its biodegradation by pure cultures of bacteria has not been widely investigated and the catabolic pathway (s) for nitenpyram metabolism remain elusive. In this study, the aerobic strain DF-1, isolated from a wastewater-treatment pool contaminated with nitenpyram. The strain was designated an Ochrobactrum sp. utilizing a combination of traditional methods and molecular ones. Strain DF-1 can use nitenpyram as a sole carbon or nitrogen source for growth. In liquid medium, 100 mg·L-1 nitenpyram was metabolized to undetectable levels within 10 days. Four metabolites were found by gas chromatography-mass spectrometry (GC-MS) analyses during nitenpyram degradation. According to the aforementioned data, a partial metabolic pathway of nitenpyram was proposed of strain DF-1. Inoculation of strain DF-1 promoted nitenpyram (10 mg·kg-1) degradation in either sterile or non-sterile soil. To our knowledge, this is the first characterization of nitenpyram degradation by a specific bacterium and likely to be exploited for the remediation of nitenpyram-contaminated sites.
Collapse
Affiliation(s)
- Guangli Wang
- Anhui Province Key Laboratory of Pollution Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Mengqing Chen
- Anhui Province Key Laboratory of Pollution Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Li Jiang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Yunfang Zhang
- Anhui Province Key Laboratory of Pollution Sensitive Materials and Environmental Remediation, School of Life Sciences, Huaibei Normal University, Huaibei, China
| |
Collapse
|
15
|
Purnomo AS, Putra SR, Putro HS, Hamzah A, Rohma NA, Rohmah AA, Rizqi HD, Tangahu BV, Warmadewanthi IDAA, Shimizu K. The application of biosurfactant-producing bacteria immobilized in PVA/SA/bentonite bio-composite for hydrocarbon-contaminated soil bioremediation. RSC Adv 2023; 13:21163-21170. [PMID: 37456549 PMCID: PMC10339068 DOI: 10.1039/d3ra02249h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Oil spills that contaminate the environment can harm the surrounding ecosystem. The oil contains petroleum hydrocarbon which is toxic to the environment hence it needs to be removed. The use of bacteria as remediation media was modified by immobilizing into a matrix hence the bacteria can survive in harsh conditions. In this research, the ability of biosurfactant-producing bacteria (Pseudomonas aeruginosa, Bacillus subtilis, and Ralstonia pickettii) immobilized in the PVA/SA/bentonite matrix was tested in remediation on oil-contaminated soil. The immobilized beads filled with bacteria were added to the original soil sample, as well as washed soil. The beads were characterized by using FTIR and SEM. Based on FTIR analysis, the PVA/SA/bentonite@bacteria beads had similar functional groups compared to each other. SEM analysis showed that the beads had non-smooth structure, while the bacteria were spread outside and agglomerated. Furthermore, GC-MS analysis results showed that immobilized B. subtilis and R. pickettii completely degraded tetratriacontane and heneicosane, respectively. Meanwhile, after soil washing pre-treatment, immobilized bacteria could completely degrade octadecane (P. aeruginosa and R. pickettii) and tetratriacontane (P. aeruginosa and B. subtilis). Based on those results, immobilized bacteria could degrade oil compounds. The degradation result was influenced by the enzymes produced, the ability of the bacteria, the suitability of the test media, and the matrix used. Therefore, this study can be a reference for further soil remediation using eco-friendly methods.
Collapse
Affiliation(s)
- Adi Setyo Purnomo
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS) Kampus ITS Sukolilo Surabaya 60111 Indonesia
| | - Surya Rosa Putra
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS) Kampus ITS Sukolilo Surabaya 60111 Indonesia
| | - Herdayanto Sulistyo Putro
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS) Kampus ITS Sukolilo Surabaya 60111 Indonesia
| | - Afan Hamzah
- Department of Industrial Chemical Engineering Technology, Faculty of Vocations, Institut Teknologi Sepuluh Nopember (ITS) Kampus ITS Sukolilo Surabaya 60111 Indonesia
| | - Nova Ainur Rohma
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS) Kampus ITS Sukolilo Surabaya 60111 Indonesia
| | - Alya Awinatul Rohmah
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS) Kampus ITS Sukolilo Surabaya 60111 Indonesia
| | - Hamdan Dwi Rizqi
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS) Kampus ITS Sukolilo Surabaya 60111 Indonesia
| | - Bieby Voijant Tangahu
- Department of Environmental Engineering, Faculty of Civil, Planning, and Geo Engineering, Institut Teknologi Sepuluh Nopember (ITS) Kampus ITS Sukolilo Surabaya 60111 Indonesia
| | - I D A A Warmadewanthi
- Department of Environmental Engineering, Faculty of Civil, Planning, and Geo Engineering, Institut Teknologi Sepuluh Nopember (ITS) Kampus ITS Sukolilo Surabaya 60111 Indonesia
| | - Kuniyoshi Shimizu
- Department of Agro-Environmental Sciences, Faculty of Agriculture, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|