1
|
Shu J, Chen C, Yang C, Ren X, Chen G, Wang W, Zhou G, Wu Q, Tang P, Liu B. Biodegradation-assisted removal of sulfur-based odor compounds in rural drinking water using durable chitosan/polyvinyl alcohol biochar aerogels. BIORESOURCE TECHNOLOGY 2025; 418:131915. [PMID: 39617350 DOI: 10.1016/j.biortech.2024.131915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
Rural drinking water often suffers from unpleasant odors like dimethyl sulfide (DMDS) and dimethyl trisulfide (DMTS) due to poor raw water quality and limited treatment options. This study introduces durable chitosan/polyvinyl alcohol (PVA) biochar aerogels-supported bioflims in ultrafiltration (BAB-UF) reactors, where the incorporation of PVA significantly enhances structural integrity, biodegradation resistance, and functional lifespan, providing an efficient, sustainable solution for removing odorous compounds from rural water. Experimental results showed the enhanced chitosan/PVA porous biochar aerogels (CPPCA) displayed excellent biocapacity and structural stability. After 63 days of continuous operation, the degradation rate of biochar aerogels with 0.2 wt% PVA (CP2PCA) was only 8.2 %. The one-step membrane reactors utilizing PVA-enhanced aerogels achieved removal efficiencies for DMDS/DMTS pollutants of up to 98.4 %, surpassing systems without PVA. These findings indicate the potential for improved aerogels in rural drinking water treatment, providing a viable solution for effective and low-maintenance water purification.
Collapse
Affiliation(s)
- Jingyu Shu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Chengdu Municipal Engineering Design & Research Institute Co., Ltd., Sichuan 610207, PR China
| | - Chen Chen
- Litree Purifying Technology Co., Ltd., Haikou, Hainan 571126, PR China
| | - Chunyan Yang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Xiaoyu Ren
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Guijing Chen
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Wenjie Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Guanyu Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Qidong Wu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Peng Tang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Baicang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China.
| |
Collapse
|
2
|
Zyoud AH. Photodegradation of aqueous tetracycline using CuS@TiO₂ composite under solar-simulated light: Complete mineralization, catalyst efficiency, and reusability. Heliyon 2025; 11:e41662. [PMID: 39877609 PMCID: PMC11773078 DOI: 10.1016/j.heliyon.2025.e41662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/07/2024] [Accepted: 01/02/2025] [Indexed: 01/31/2025] Open
Abstract
While CuS/TiO₂ has been previously synthesized and employed in a limited number of photodegradation studies, the current study investigated its effectiveness for TC degradation under UV-visible light irradiation. CuS is known to be a nontoxic, environmentally friendly material; hence, it has great potential as an alternative to CdS and CdSe, which are used conventionally as sensitizers. In this work, the CuS/TiO₂ photocatalysts achieved a maximum 95 % removal of TC at an initial concentration of 20 ppm, confirming the good utilization of active sites. Even though the efficiency decreased for higher TC concentrations due to the saturation of the active sites, the values of the quantum yield showed that photon utilization was still effective. Consequently, the photocatalyst showed an optimum yield at 0.20 g, and its further addition increased the efficiency rather insignificantly. In addition to the near-complete mineralization of TC by the CuS/TiO₂ composite with few byproducts, its reusability was excellent because it showed almost consistent performance in successive cycles. These results further confirm the continuous relevance and potential of CuS/TiO₂ as a practical, sustainable solution for organic pollutant degradation, reinforcing its value in environmental remediation applications.
Collapse
Affiliation(s)
- Ahed H. Zyoud
- Department of Chemistry, An-Najah National University, Nablus, Palestine
- Center of Excellence in Materials Science and Nanotechnology (CEMSANT), An-Najah National University, Nablus, Palestine
| |
Collapse
|
3
|
Zhang S, Yao Z, Wang S, Zhang Y, Liu T, Zuo X. Dissolved oxygen facilitates efficiency of chlorine disinfection for antibiotic resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173210. [PMID: 38750753 DOI: 10.1016/j.scitotenv.2024.173210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Controlling the dissemination of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) is a global concern. While commonly used chlorine disinfectants can damage or even kill ARB, dissolved oxygen (DO) may affect the formation of reactive chlorine species. This leads to the hypothesis that DO may play roles in mediating the effectiveness of chlorine disinfection for antibiotic resistance. To this end, this study investigated the impacts of DO on the efficiency of chlorine disinfection for antibiotic resistance. The results revealed that DO could increase the inactivation efficiency of ARB under chloramine and free chlorine exposure at practically relevant concentrations. Reactive species induced by DO, including H2O2, O2-, and OH, inactivated ARB strains by triggering oxidative stress response and cell membrane damage. In addition, the removal efficiency of extracellular ARGs (i.e. tetA and blaTEM) was enhanced with increasing dosage of free chlorine or chloramine under aerobic conditions. DO facilitated the fragmentation of plasmids, contributing to the degradation of extracellular ARGs under exposure to chlorine disinfectants. The findings suggested that DO facilitates disinfection efficiency for antibiotic resistance in water treatment systems.
Collapse
Affiliation(s)
- Shuai Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zheng Yao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Shu Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yu Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Xiaojun Zuo
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing 210023, China.
| |
Collapse
|
4
|
Fu M, Qiu S, Wang J, Zhu Y, Yuan M, Wang L. Tourmaline mediated enhanced autotrophic denitrification: The mechanisms of electron transfer and Paracoccus enrichment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169847. [PMID: 38185169 DOI: 10.1016/j.scitotenv.2023.169847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
Autotrophic denitrification (AD) without carbon source is an inevitable choice for denitrification of municipal wastewater under the carbon peaking and carbon neutrality goals. This study first employed sulfur-tourmaline-AD (STAD) as an innovative nitrate removal trial technique in wastewater. STAD demonstrated a 2.23-fold increase in nitrate‑nitrogen (NO3--N) removal rate with reduced nitrite‑nitrogen (NO2--N) accumulation, effectively removing 99 % of nitrogen pollutants compared to sulfur denitrification. Some denitrifiers microorganisms that could secrete tyrosine, tryptophan, and aromatic protein (extracellular polymeric substances (EPS)). Moreover, according to the EPS composition and characteristics analysis, the secretion of loosely bound extracellular polymeric substances (LB-EPS) that bound to the bacterial endogenous respiration and enriched microbial abundance, was produced more in the STAD system, further improving the system stability. Furthermore, the addition of tourmaline (Tm) facilitated the discovery of a new genus (Paracoccus) that enhanced nitrate decomposition. Applying optimal electron donors through metabolic pathways and the microbial community helps to strengthen the AD process and treat low carbon/nitrogen ratio wastewater efficiently.
Collapse
Affiliation(s)
- Mengqi Fu
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, China
| | - Shan Qiu
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, China.
| | - Jue Wang
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, China
| | - Yingshi Zhu
- Zhejiang Environment Technology Co., Ltd, Hangzhou 311100, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Mu Yuan
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, China
| | - Liang Wang
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, China
| |
Collapse
|
5
|
Keithley AE, Gomez-Alvarez V, Williams D, Ryu H, Lytle DA. Depth profiles of biological aerated contactors: Characterizing microbial activity treating reduced contaminants. JOURNAL OF WATER PROCESS ENGINEERING 2023; 56:1-11. [PMID: 38357328 PMCID: PMC10866302 DOI: 10.1016/j.jwpe.2023.104360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The biological treatment process consisting of an aerated contactor and filter is effective for groundwaters containing elevated ammonia and other reduced contaminants, including iron, manganese, arsenic, and methane. Depth profiles characterizing microbial activity across aerated contactors are lacking. A 1-year pilot study comparing gravel- and ceramic-packed contactors was conducted, and media depth profile samples were collected at the conclusion of the study. Media and water samples also were collected from pilot-scale aerated contactors at 4 other water systems. Water quality, media surface metals concentrations, and a suite of biofilm parameters were analyzed. Media surface metals concentrations were greatest at the influent end. ATP concentrations, extracellular polymeric substances, and extracellular enzyme activities tended to be similar across depth. Bacteria and functional genes involved in contaminant oxidation co-occurred and tended to decrease across depth, but were not correlated to the media metals concentration. Microbial community composition changed with depth, and the diversity either decreased or remained similar. The microbial activity profiles through aerated contactors differed from what is typically reported for groundwater biofilters, suggesting that the different reactor flow and dissolved oxygen profiles impacted the microbial community.
Collapse
Affiliation(s)
- Asher E. Keithley
- U.S. Environmental Protection Agency, ORD, CESER, WID, Cincinnati, OH 45268, United States
| | - Vicente Gomez-Alvarez
- U.S. Environmental Protection Agency, ORD, CESER, WID, Cincinnati, OH 45268, United States
| | - Daniel Williams
- U.S. Environmental Protection Agency, ORD, CESER, WID, Cincinnati, OH 45268, United States
| | - Hodon Ryu
- U.S. Environmental Protection Agency, ORD, CESER, WID, Cincinnati, OH 45268, United States
| | - Darren A. Lytle
- U.S. Environmental Protection Agency, ORD, CESER, WID, Cincinnati, OH 45268, United States
| |
Collapse
|
6
|
He H, Sun N, Li L, Ai J, Zhou H, Yang X, Yang X, Wang D, Zhang W. Effects of dissolved organic matter removal and molecular transformation in different water treatment processes on formation of disinfection byproducts. WATER RESEARCH 2023; 245:120626. [PMID: 37713793 DOI: 10.1016/j.watres.2023.120626] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/16/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
Alterations in molecular composition of dissolved organic matter (DOM) during water treatments can influence the composition and toxicity of disinfection by-products (DBPs) in subsequent chlorination disinfection process. In this study, the impacts of DOM composition after various water treatment techniques (coagulation, adsorption, nanofiltration, biological aerated filter (BAF), and their integrated processes) on the generation mechanisms of DBPs were comprehensively explored by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) in combination with GC-MS and LC-MS analysis. The results indicated that coagulation preferentially removed unsaturated (low H/C) and oxidized (high O/C) compounds, whereas adsorption was prone to remove the reduced (low O/C) component that was more reactive with chlorine, leading to lower yields (μg DBP/mg DOC) of trihalomethanes (THMs) and haloacetic acids (HAAs) during subsequent chlorination. The coagulation-adsorption technique exhibited a relatively high removal of both known and unknown DBPs, demonstrating that coagulation and adsorption were complementary for DOM removal at the molecular level. Nanofiltration selectively removed molecules with relatively high O/C, however, those with very low O/C that were more reactive with chlorine could pass through the nanofiltration membrane, resulting in the highest yields of THMs and HAAs. Although BAF was inefficient in removing DBPs precursors, it could convert molecules with low degree of oxidation and unsaturation into highly oxidized and unsaturated ones, thereby significantly enhancing the removal of DBPs precursors in the subsequent coagulation-adsorption process. These findings are instrumental in developing and selecting more effective techniques to minimize the formation of DBPs in water treatment.
Collapse
Affiliation(s)
- Hang He
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Niannian Sun
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Lanfeng Li
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Jing Ai
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Hao Zhou
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Xiaoyin Yang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Xiaofang Yang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dongsheng Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Weijun Zhang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|