1
|
Xu J, Chen L, Zhou T, Zhang C, Zhang J, Zhao B. Salinity-driven differentiation of bacterial and fungal communities in coastal wetlands: Contrasting assembly processes and spatial dynamics. ENVIRONMENTAL RESEARCH 2025; 279:121895. [PMID: 40393537 DOI: 10.1016/j.envres.2025.121895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/15/2025] [Accepted: 05/17/2025] [Indexed: 05/22/2025]
Abstract
Coastal wetlands are critical for carbon sequestration and coastal protection, yet increasingly threatened by salinization. While soil microbiota mediate these ecosystems' functioning and stability, the mechanisms governing bacterial and fungal assembly across intermediate spatial scales remain poorly resolved. Here, we investigated microbial communities across a 30-km seaward-to-landward gradient in the Yellow River Delta during May 2020 using 16S rRNA and ITS sequencing coupled with ecological modeling. Our results revealed a striking dichotomy: bacterial communities were predominantly structured by deterministic environmental filtering (explained 49.2 % of variation), whereas fungal communities exhibited stronger spatial dependence (Mantel r = 0.28 vs 0.06 for bacteria, P < 0.01). Null model analyses confirmed salinity-driven variable selection for bacteria (60.0 % contribution) and stochastic homogenizing dispersal for fungi (44.9 %). Microbial interaction network analysis (based on taxon co-occurrence patterns) demonstrated the fungal network resisted salinity perturbations through high modularity (0.87 vs 0.68 for bacteria) and short path lengths (3.10 vs 4.90). Path analysis further showed geographic distance indirectly stabilized fungal networks (indirect effect = 0.33) but minimally affected bacteria. These findings highlight contrasting ecological strategies: bacteria prioritize deterministic variable selection for rapid resource acquisition, whereas fungi rely on homogenizing dispersal for spatial stability. These findings advance our understanding of microbial responses to salinization under climate change, informing adaptive management strategies to preserve microbial-mediated carbon storage and ecosystem functionality in salt-affected soils.
Collapse
Affiliation(s)
- Jisheng Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China.
| | - Lin Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China
| | - Tantan Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Congzhi Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China
| | - Bingzi Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 211135, China; University of Chinese Academy of Sciences, Nanjing, Nanjing, 211135, China.
| |
Collapse
|
2
|
Qi X, Hou S, Hu W, Ding C, Li Y, Xiong J. Diversity and distribution characteristics of myxobacteria in the rhizosphere and nonrhizosphere soils of the halophyte Haloxylon ammodendron in the high saline-alkaline Ebinur Lake Wetland. Can J Microbiol 2025; 71:1-17. [PMID: 40116366 DOI: 10.1139/cjm-2024-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
This study employed Illumina HiSeq high-throughput sequencing technology to analyze the V4-V5 regions of myxobacterial 16S rRNA in rhizosphere and nonrhizosphere soils of Haloxylon ammodendron in the saline-alkaline wetland of Ebinur Lake, with the aim of investigating the community structure and diversity of myxobacteria. Results indicated that myxobacterial communities in rhizosphere soils exhibited greater diversity and richness compared to nonrhizosphere soils. Soil physicochemical properties, particularly moisture content, were identified as key environmental factors influencing myxobacterial diversity. The halotolerant genus Haliangium was found to be predominant under saline-alkaline conditions. Additionally, myxobacteria demonstrated distinct ecological specificity and environmental adaptability between rhizosphere and nonrhizosphere soils. For example, the genus Enhygromyxa exhibited a negative correlation with soil moisture content in rhizosphere soils but a positive correlation with soil electrical conductivity in nonrhizosphere soils. Co-occurrence network analysis revealed complex interaction patterns among myxobacterial genera and other bacterial genera, with closer interactions observed in rhizosphere soils. This study highlights the importance of environmental factors in regulating microbial community structure and function in saline-alkaline wetlands, providing new insights into the ecological roles and interaction mechanisms of myxobacteria within the ecosystem.
Collapse
Affiliation(s)
- Xiaoyun Qi
- College of Life Sciences, Shihezi University, Shihezi City 832061, China
| | - Suhui Hou
- College of Life Sciences, Shihezi University, Shihezi City 832061, China
| | - Wenge Hu
- College of Life Sciences, Shihezi University, Shihezi City 832061, China
| | - Cheng Ding
- College of Life Sciences, Shihezi University, Shihezi City 832061, China
| | - Yang Li
- College of Life Sciences, Shihezi University, Shihezi City 832061, China
| | - Jie Xiong
- College of Life Sciences, Shihezi University, Shihezi City 832061, China
| |
Collapse
|
3
|
Zou D, Zhang C, Liu Y, Li M. Biogeographical distribution and community assembly of Myxococcota in mangrove sediments. ENVIRONMENTAL MICROBIOME 2024; 19:47. [PMID: 39003484 PMCID: PMC11245791 DOI: 10.1186/s40793-024-00593-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Myxococcota, characterized by their distinct social lifestyles, are widely distributed micro-predators in global sediments. They can feed on a wide range of bacterial, archaeal, and fungal prey. Myxococcota are capable of producing diverse secondary metabolites, playing key roles in microbial food webs, and regulating the microbial community structures in different ecosystems. However, Myxococcota are rarely pure cultured due to the challenging and stringent culturing conditions. Their natural distribution, niche differentiation, and predator-prey relationships in a specific habitat are poorly understood. RESULTS In this study, we conducted a comprehensive analysis of the 16S rRNA gene sequence data from public databases and our collection. We compared the abundance, diversity, and distribution patterns of Myxococcota in various habitats, with a specific focus on mangroves. We found that Myxococcota accounted for 1.45% of the total prokaryotes in global sediments based on the abundance of 16S rRNA genes. Myxococcota are abundant and diverse in mangrove sediments. They tend to be more generalistic in mangroves than in other habitats due to their wide niche breadth. Besides, the deterministic processes (variable selection) influenced the assembly of mangrove Myxococcota communities significantly more than stochastic processes. Further, we determined that environmental factors explained a greater amount of total community variation in mangrove Myxococcota than geographical variables (latitude and sediment depth). In the end, through the analysis of microbial co-occurrence networks, Myxococcota emerges as a key component and functions as a connector in the mangrove microbial community. CONCLUSIONS Our study enhances comprehension of mangrove Myxococcota's biogeography, assembly patterns, driving factors, and co-occurrence relationships, as well as highlights their unique niche and ecological importance in mangrove sediments.
Collapse
Affiliation(s)
- Dayu Zou
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- Institute for Advanced Study, Shenzhen Key Laboratory of Marine Microbiome Engineering, Shenzhen University, Shenzhen, 518060, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, 518060, China
| | - Cuijing Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- Institute for Advanced Study, Shenzhen Key Laboratory of Marine Microbiome Engineering, Shenzhen University, Shenzhen, 518060, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, 518060, China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
- Institute for Advanced Study, Shenzhen Key Laboratory of Marine Microbiome Engineering, Shenzhen University, Shenzhen, 518060, China.
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, 518060, China.
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
- Institute for Advanced Study, Shenzhen Key Laboratory of Marine Microbiome Engineering, Shenzhen University, Shenzhen, 518060, China.
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
4
|
Wu T, Ding J, Zhao YJ, Ding L, Zang Y, Sun HJ, Zhong L, Pang JW, Li Y, Ren NQ, Yang SS. Microplastics shaped performance, microbial ecology and community assembly in simultaneous nitrification, denitrification and phosphorus removal process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172651. [PMID: 38653406 DOI: 10.1016/j.scitotenv.2024.172651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/28/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
The widespread use of microplastics (MPs) has led to an increase in their discharge to wastewater treatment plants. However, the knowledge of impact of MPs on macro-performance and micro-ecology in simultaneous nitrification, denitrification, and phosphorus removal (SNDPR) systems is limited, hampering the understanding of potential risks posed by MPs. This study firstly comprehensively investigated the performance, species interactions, and community assembly under polystyrene (PS) and polyvinyl chloride (PVC) exposure in SNDPR systems. The results showed under PS (1, 10 mg/L) and PVC (1, 10 mg/L) exposure, total nitrogen removal was reduced by 3.38-10.15 %. PS and PVC restrained the specific rates of nitrite and nitrate reduction (SNIRR, SNRR), as well as the activities of nitrite and nitrate reductase enzymes (NIR, NR). The specific ammonia oxidation rate (SAOR) and activity of ammonia oxidase enzyme (AMO) were reduced only at 10 mg/L PVC. PS and PVC enhanced the size of co-occurrence networks, niche breadth, and number of key species while decreasing microbial cooperation by 5.85-13.48 %. Heterogeneous selection dominated microbial community assembly, and PS and PVC strengthened the contribution of stochastic processes. PICRUSt prediction further revealed some important pathways were blocked by PS and PVC. Together, the reduced TN removal under PS and PVC exposure can be attributed to the inhibition of SAOR, SNRR, and SNIRR, the restrained activities of NIR, NR, and AMO, the changes in species interactions and community assembly mechanisms, and the suppression of some essential metabolic pathways. This paper offers a new perspective on comprehending the effects of MPs on SNDPR systems.
Collapse
Affiliation(s)
- Tong Wu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ying-Jun Zhao
- Zhe Jiang University of Technology Engineering Design Group CO., Ltd, China
| | - Lan Ding
- Department of Analytical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Yani Zang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Han-Jun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Le Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Digital Technology Co., Ltd., Beijing 100096, China
| | - Yan Li
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
5
|
Radford EJ, Whitworth DE. The genetic basis of predation by myxobacteria. Adv Microb Physiol 2024; 85:1-55. [PMID: 39059819 DOI: 10.1016/bs.ampbs.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Myxobacteria (phylum Myxococcota) are abundant and virtually ubiquitous microbial predators. Facultatively multicellular organisms, they are able to form multicellular fruiting bodies and swarm across surfaces, cooperatively hunting for prey. Myxobacterial communities are able to kill a wide range of prey microbes, assimilating their biomass to fuel population growth. Their mechanism of predation is exobiotic - hydrolytic enzymes and toxic metabolites are secreted into the extracellular environment, killing and digesting prey cells from without. However, recent observations of single-cell predation and contact-dependent prey killing challenge the dogma of myxobacterial predation being obligately cooperative. Regardless of their predatory mechanisms, myxobacteria have a broad prey range, which includes Gram-negative bacteria, Gram-positive bacteria and fungi. Pangenome analyses have shown that their extremely large genomes are mainly composed of accessory genes, which are not shared by all members of their species. It seems that the diversity of accessory genes in different strains provides the breadth of activity required to prey upon such a smorgasbord of microbes, and also explains the considerable strain-to-strain variation in predatory efficiency against specific prey. After providing a short introduction to general features of myxobacterial biology which are relevant to predation, this review brings together a rapidly growing body of work into the molecular mechanisms and genetic basis of predation, presenting a summary of current knowledge, highlighting trends in research and suggesting strategies by which we can potentially exploit myxobacterial predation in the future.
Collapse
Affiliation(s)
- Emily J Radford
- Department of Life Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
| | - David E Whitworth
- Department of Life Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom.
| |
Collapse
|
6
|
Zhang L, Guo L, Cui Z, Ju F. Exploiting predatory bacteria as biocontrol agents across ecosystems. Trends Microbiol 2024; 32:398-409. [PMID: 37951768 DOI: 10.1016/j.tim.2023.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023]
Abstract
Predatory bacteria have been increasingly known for their ubiquity in environments and great functional potentials in controlling unwanted microorganisms. Fundamental understanding of the predation mechanisms, population dynamics, and interaction patterns underlying bacterial predation is required for wise exploitation of predatory bacteria for enhancing ecoenvironmental, animal, and human health. Here, we review the recent achievements on applying predatory bacteria in different systems as biocontrol agents and living antibiotics as well as new findings in their phylogenetic diversity and predation mechanisms. We finally propose critical issues that deserve priority research and highlight the necessity to combine classic culture-based and advanced culture-independent approaches to push research frontiers of bacterial predation across ecosystems for promising biocontrol and therapy strategies towards a sustainable ecoenvironment and health.
Collapse
Affiliation(s)
- Lu Zhang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province, China; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Lingyun Guo
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province, China; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang Province, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Feng Ju
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province, China; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
7
|
Fan Q, Liu K, Wang Z, Liu D, Li T, Hou H, Zhang Z, Chen D, Zhang S, Yu A, Deng Y, Cui X, Che R. Soil microbial subcommunity assembly mechanisms are highly variable and intimately linked to their ecological and functional traits. Mol Ecol 2024; 33:e17302. [PMID: 38421102 DOI: 10.1111/mec.17302] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/30/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Revealing the mechanisms underlying soil microbial community assembly is a fundamental objective in molecular ecology. However, despite increasing body of research on overall microbial community assembly mechanisms, our understanding of subcommunity assembly mechanisms for different prokaryotic and fungal taxa remains limited. Here, soils were collected from more than 100 sites across southwestern China. Based on amplicon high-throughput sequencing and iCAMP analysis, we determined the subcommunity assembly mechanisms for various microbial taxa. The results showed that dispersal limitation and homogenous selection were the primary drivers of soil microbial community assembly in this region. However, the subcommunity assembly mechanisms of different soil microbial taxa were highly variable. For instance, the contribution of homogenous selection to Crenarchaeota subcommunity assembly was 70%, but it was only around 10% for the subcommunity assembly of Actinomycetes, Gemmatimonadetes and Planctomycetes. The assembly of subcommunities including microbial taxa with higher occurrence frequencies, average relative abundance and network degrees, as well as wider niches tended to be more influenced by homogenizing dispersal and drift, but less affected by heterogeneous selection and dispersal limitation. The subcommunity assembly mechanisms also varied substantially among different functional guilds. Notably, the subcommunity assembly of diazotrophs, nitrifiers, saprotrophs and some pathogens were predominantly controlled by homogenous selection, while that of denitrifiers and fungal pathogens were mainly affected by stochastic processes such as drift. These findings provide novel insights into understanding soil microbial diversity maintenance mechanisms, and the analysis pipeline holds significant value for future research.
Collapse
Affiliation(s)
- Qiuping Fan
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
| | - Kaifang Liu
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
| | - Zelin Wang
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
| | - Dong Liu
- School of Life Sciences, Yunnan University, Kunming, China
| | - Ting Li
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haiyan Hou
- School of Ecology and Environment Science, Yunnan University, Kunming, China
| | - Zejin Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Danhong Chen
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Song Zhang
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
| | - Anlan Yu
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
| | - Yongcui Deng
- School of Geography Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaoyong Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rongxiao Che
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
| |
Collapse
|
8
|
Zhang Q, Zhang Y, Wang Y, Lin S, Chen M, Cheng P, Ye J, Miao P, Jia X, Wang H. Effects of pruning on tea tree growth, tea quality, and rhizosphere soil microbial community. Microbiol Spectr 2023; 11:e0160123. [PMID: 37750694 PMCID: PMC10655597 DOI: 10.1128/spectrum.01601-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/05/2023] [Indexed: 09/27/2023] Open
Abstract
Pruning is an important agronomic measure in tea plantation management. This study analyzed the effects of pruning on tea tree growth, tea quality, rhizosphere soil physicochemical indexes, microbial communities, and metabolic pathways. The results showed that pruning was beneficial for promoting tea tree growth and increasing tea yield, but not for the synthesis and accumulation of quality-related compounds in tea leaves. After pruning, organic matter, available phosphorus content and catalase, acid phosphatase, and sucrase activities in rhizosphere soil were significantly higher than those in unpruned tea trees, while total phosphorus, total potassium, and available nitrogen content were significantly lower than those in unpruned tea trees. The results of microbial community analysis of tea rhizosphere soil showed that the key changed characteristic microorganisms after pruning were Haliangium, Acidicaldus, Reyranella, Acidobacterium, Aquicella, and Granulicella, and the key changed characteristic microbial metabolic pathways were ko00072, ko00473, ko00750, ko01055, ko00521, and ko02040. Furthermore, the results found that pruning promoted Haliangium, Acidicaldus, and Reyranella abundances, ko00072, ko00473, and ko00750, respectively, microbial metabolic pathways in tea trees rhizosphere soil, and reduced Acidobacterium, Granulicella, and Aquicella abundance, ko01055, ko00521, and ko02040, respectively, microbial metabolic pathways, thereby increasing the activities of soil catalase, acid phosphatase, and sucrase, improving soil organic matter decomposition efficiency and available phosphorus content, and promoting tea yield, but not synthesis and accumulation of quality-related compounds in tea leaves. This study provides an important theoretical reference for the management of agronomic measures in tea plantations. IMPORTANCE Pruning is an important agronomic measure in tea cultivation and management. We found that pruning was beneficial to increase tea yield, but it would reduce tea quality, especially the content of polyphenols, theanine, flavonoids, and free amino acids in tea leaves was reduced. The reason for this phenomenon was that pruning promotes the enrichment of special functional microorganisms and the enhancement of special metabolic pathways in the soil, leading to changes in the nutrient cycle in the soil.
Collapse
Affiliation(s)
- Qi Zhang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Ying Zhang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Yuhua Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoxiong Lin
- College of Life Science, Longyan University, Longyan, China
| | - Meihui Chen
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Pengyuan Cheng
- College of Life Science, Longyan University, Longyan, China
| | - Jianghua Ye
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Pengyao Miao
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Xiaoli Jia
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Haibin Wang
- College of Tea and Food, Wuyi University, Wuyishan, China
| |
Collapse
|
9
|
Chen X, He B, Ding C, Qi X, Li Y, Hu W. Diversity and Functional Distribution Characteristics of Myxobacterial Communities in the Rhizosphere of Tamarix chinensis Lour in Ebinur Lake Wetland, China. Microorganisms 2023; 11:1924. [PMID: 37630484 PMCID: PMC10459050 DOI: 10.3390/microorganisms11081924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Soil salinity and desertification are seriously threatening the ecological environment of Ebinur Lake Wetland. Myxobacteria are the main soil microbes in this wetland. However, it is still unclear if the myxobacterial community structure and diversity can improve the ecological environment of Ebinur Lake Wetland by regulating soil nutrient cycling. Therefore, based on high-throughput sequencing of 16SrRNA gene technology, the composition, function, and diversity of the myxobacterial community in the rhizosphere of Tamarix chinensis Lour in Ebinur Lake Wetland were studied. Rhizosphere soil samples were collected from 10 sampling sites (S1, S2, S3, S4, S5, S6, S7, S8, S9, and S10) for three months (April, July, and October) to explore the main biotic and abiotic factors affecting the diversity and functions of myxobacterial communities. The results revealed that diversity of myxobacterial communities was mainly influenced by the seasons. The diversity of myxobacterial communities was significantly higher in the month of July, as compared to April and October. FAPROTAX functional prediction revealed that, in addition to predation or parasitic functions, myxobacteria were mainly involved in ecological functions, such as nitrite respiration, nitrite ammonification, and nitrogen respiration. The Spearman correlation analysis of the diversity and function of myxobacteria and bacteria showed that there were significant positive correlations between myxobacteria diversity, function, and bacterial diversity. The co-occurrence analysis of myxobacteria and bacterial networks showed that over time, myxobacteria interacted differently with different bacterial networks and jointly regulated the microbial community in the rhizosphere of Tamarix chinensis Lour through predation or cooperation. The redundancy analysis of soil physicochemical factors as well as the myxobacterial community showed that electrical conductivity, exchangeable calcium, and exchangeable potassium were the most important abiotic factors affecting the diversity, structure, and function of the myxobacterial community. These results reveal that myxobacteria may play important roles in degrading nitrogen compounds and regulating the activity of soil microorganisms. This study provides theoretical support for the ecological restoration of Ebinur Lake Wetland and lays the foundation for the future development and utilization of myxobacteria resources.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenge Hu
- School of Life Science, Shihezi University, Shihezi 832000, China; (X.C.); (B.H.); (C.D.); (X.Q.); (Y.L.)
| |
Collapse
|
10
|
Kamada S, Wakabayashi R, Naganuma T. Phylogenetic Revisit to a Review on Predatory Bacteria. Microorganisms 2023; 11:1673. [PMID: 37512846 PMCID: PMC10385382 DOI: 10.3390/microorganisms11071673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Predatory bacteria, along with the biology of their predatory behavior, have attracted interest in terms of their ecological significance and industrial applications, a trend that has been even more pronounced since the comprehensive review in 2016. This mini-review does not cover research trends, such as the role of outer membrane vesicles in myxobacterial predation, but provides an overview of the classification and newly described taxa of predatory bacteria since 2016, particularly with regard to phylogenetic aspects. Among them, it is noteworthy that in 2020 there was a major phylogenetic reorganization that the taxa hosting Bdellovibrio and Myxococcus, formerly classified as Deltaproteobacteria, were proposed as the new phyla Bdellovibrionota and Myxococcota, respectively. Predatory bacteria have been reported from other phyla, especially from the candidate divisions. Predatory bacteria that prey on cyanobacteria and predatory cyanobacteria that prey on Chlorella have also been found. These are also covered in this mini-review, and trans-phylum phylogenetic trees are presented.
Collapse
Affiliation(s)
- Saki Kamada
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima 739-8528, Japan
| | - Ryoka Wakabayashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima 739-8528, Japan
| | - Takeshi Naganuma
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima 739-8528, Japan
| |
Collapse
|