1
|
Jia Q, Yi Q, Xu Z, Liu X, Zhou Z, Zhang J. Quantifying the impact of damming on phosphorus reallocation: Finer particles offset the reduction in soluble reactive phosphorus (SRP) by decreasing suspended sediment concentration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175098. [PMID: 39079635 DOI: 10.1016/j.scitotenv.2024.175098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/03/2024]
Abstract
In this research, an innovative approach to quantify the impact of damming on phosphorus (P) reallocation between suspended sediments (SS) and water was proposed. P allocation can be described by the surface complexation model, with the impact of damming quantified by four variables: P load, suspended sediment concentration (SSC), particle size, and pH. Iron/aluminium (Fe/Al) oxide-adsorbed P (Fe/Alo-P) was identified as the exchangeable P during adsorption/desorption equilibrium with a series of heterogeneous sediment samples from two large Asian rivers, the Mekong River and the Yellow River. In both rivers, the Fe/Alo-P concentration increased from the tail towards the dam of the reservoirs, primarily attributed to the decrease in particle size from the tail towards the dam of the reservoirs. The Fe/Alo-P concentration in the Lancang River was higher than that in the Yellow River, ranging from 14.5 to 119.9 mg kg-1 and from 14.5 to 22.1 mg kg-1, respectively. The soluble reactive P (SRP) concentration decreased with decreasing SSC, while finer suspended sediment particles containing more Fe/Alo-P greatly offset the reduction in SRP concentration. When the maximum Fe/Alo-P concentration in the finest particles of SS was assumed to be 100 mg kg-1, the P equilibrium concentration (ce) decreased from 0.028 mg L-1 to 0.008 mg L-1 when the SSC decreased from 64 g L-1 to 1 g L-1 for SS with a median grain size (D50) of 32 μm and an Fe/Alo-P concentration of 11 mg kg-1. However, ce increased from 0.008 mg L-1 to 0.021 mg L-1 when the D50 of SS decreased from 32 μm to 4 μm with an SSC of 1 g L-1 and an Fe/Alo-P concentration of 76 mg kg-1 for 4-μm SS. The SRP concentration is sensitive to the Fe/Alo-P concentration in SS, and the P allocation ratio between sediments and water is comparable.
Collapse
Affiliation(s)
- Qirui Jia
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Qitao Yi
- School of Civil Engineering, Yantai University, Yantai 264005, China.
| | - Ziying Xu
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Xiao Liu
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Zhaona Zhou
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Jin Zhang
- School of Civil Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
2
|
Lu T, Su K, Ma G, Jia C, Li J, Zhao Q, Song M, Xu C, Song X. The growth and nutrient removal properties of heterotrophic microalgae Chlorella sorokiniana in simulated wastewater containing volatile fatty acids. CHEMOSPHERE 2024; 358:142270. [PMID: 38719126 DOI: 10.1016/j.chemosphere.2024.142270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/22/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
To reduce the high cost of organic carbon sources in waste resource utilization in the cultivation of microalgae, volatile fatty acids (VFAs) derived from activated sludge were used as the sole carbon source to culture Chlorella sorokiniana under the heterotrophic cultivation. The addition of VFAs in the heterotrophic condition enhanced the total nitrogen (TN) and phosphorus (TP) removal of C. sorokiniana, which proved the advantageous microalgae in using VFAs in the heterotrophic culture after screening in the previous study. To discover the possible mechanism of nitrogen and phosphorus adsorption in heterotrophic conditions by microalgae, the effect of different ratios of VFAs (acetic acid (AA): propionic acid (PA): butyric acid (BA)) on the nutrient removal and growth properties of C. sorokiniana was studied. In the 8:1:1 group, the highest efficiency (77.19%) of VFAs assimilation, the highest biomass (0.80 g L-1) and lipid content (31.35%) were achieved, with the highest TN and TP removal efficiencies of 97.44 % and 91.02 %, respectively. Moreover, an aerobic denitrifying bacterium, Pseudomonas, was determined to be the dominant genus under this heterotrophic condition. This suggested that besides nitrate uptake and utilization by C. sorokiniana under the heterotrophy, the conduct of the denitrification process was also the main reason for obtaining high nitrogen removal efficiency.
Collapse
Affiliation(s)
- Tianxiang Lu
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Kunyang Su
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China; Shandong Society for Environmental Sciences, Jinan, Shandong, 250014, PR China
| | - Guangxiang Ma
- Shandong Society for Environmental Sciences, Jinan, Shandong, 250014, PR China
| | - Cong Jia
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Jie Li
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Qi Zhao
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| | - Mingming Song
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China.
| | - Chongqing Xu
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China; Ecology Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250013, PR China
| | - Xiaozhe Song
- School of Environmental Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, PR China
| |
Collapse
|
3
|
Zhou Z, Yan R, Liu X, Xu Z, Zhang J, Yi Q. Suspended particulate matter <2.5 μm (SPM 2.5) in shallow lakes: Sedimentation resistance and bioavailable phosphorus enrichment after sediment resuspension. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168780. [PMID: 38007111 DOI: 10.1016/j.scitotenv.2023.168780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Resuspended particulate matter in shallow lakes contributes remarkable phosphorus (P) concentrations to the water column that potentially support algal/cyanobacterial growth. However, only fine particulate matter can be retained in the water column for a long time after sediment resuspension events. The size at which fine particulate matter has ecological implications remains undefined. This research defined suspended particulate matter with a median grain size <2.5 μm (SPM2.5) in shallow lakes, which resists sedimentation and enriches bioavailable P. The relationship between the size of suspended particulate matter (SPM) and water disturbance was characterized by conducting a lab-scale jar test with sediments in a shallow lake. The sedimentation of completely resuspended particulate matter occurred under a series of turbulence shear rates (G) ranging from 0 to 50 s-1. When G was larger than 20 s-1, the SPM had a median grain size (D50) ranging from 9 μm to 11 μm for the three samples. When G was <10 s-1, only SPM <2.5 μm remained in suspension. The SPM larger than 2.5 μm settled when G was between 10 s-1 and 20 s-1, and the SPM remained in complete suspension when G was larger than 20 s-1. Furthermore, P fractionation was conducted on different size-grouped particles that were sorted using gravity sedimentation. The concentration of iron/aluminium bound-P (Fe/Al-P) decreased exponentially as the particle size increased. The concentration of Fe/Al-P in SPM2.5 ranged from 902.8 mg/kg to 1212.1 mg/kg, accounting for over 80 % of extractable total phosphorus. SPM2.5 contributed a remarkable amount of bioavailable P to the algal/cyanobacterial biomass in the shallow lake with frequent sediment resuspension.
Collapse
Affiliation(s)
- Zhaona Zhou
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Rong Yan
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Xiao Liu
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Ziying Xu
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Jin Zhang
- School of Civil Engineering, Yantai University, Yantai 264005, China
| | - Qitao Yi
- School of Civil Engineering, Yantai University, Yantai 264005, China.
| |
Collapse
|
4
|
Ding W, Wang G, Ren H, Li H, Lü W, Jiang X. Recognizing the variation of DNA-P during and after the algal bloom in lake Hulun. CHEMOSPHERE 2023; 343:140293. [PMID: 37758085 DOI: 10.1016/j.chemosphere.2023.140293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Eutrophication has spread from shallow lakes in temperature zones to lakes in cold regions as a result of a continuous warm climate and human activities. Little proof for the importance of dissolved organic phosphorus (DOP) in contributing to phosphorus cycling and algae growth has been generated for aquatic ecosystems, particularly in cold eutrophic lakes. In this study, a comprehensive in situ study was conducted in overlying water, suspended particulate matter, and sediment during and after algal bloom (in July and September, respectively) in Lake Hulun. Multiple methods of 31P NMR, enzymatic hydrolysis, and UV-visible technologies were combined to detect phosphorus occurrence, bioavailability, and molecular structure from a novel angle. The 31P NMR analysis results showed that DNA-P is mainly stored in the dissolved phase and has not been detected in suspended particulate matter or sediment. Enzymatic hydrolysis was used to determine the bioavailability of DOP, which revealed that in July and September, respectively, 85% and 79% of DOP were hydrolyzable. UV-visible analysis represented that the degree of humification and molecular weight of DOP were high during the algal bloom, but these values considerably dropped following the algal bloom. The large amount of DNA-P present in the overlying water is the main reason for the high degree of humification and high molecular weight of the water body. Besides, Lake Hulun's DNA-P remains highly bioavailable during algal blooms, despite its high degree of humification and molecular weight. These findings can serve as a theoretical basis for understanding the migration and transformation of DOP, as well as the persistence of algal blooms in eutrophic lakes located in cold regions.
Collapse
Affiliation(s)
- Wanchang Ding
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Guoxi Wang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Haoyu Ren
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - He Li
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Weiwei Lü
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xia Jiang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
5
|
Sun F, Zhan Y, Lin J. Effect of capping mode on control of phosphorus release from sediment by lanthanum hydroxide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-28102-x. [PMID: 37280493 DOI: 10.1007/s11356-023-28102-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023]
Abstract
The use of in situ active capping to control phosphorus release from sediment has attracted more and more attentions in recent years. It is important to identify the effect of capping mode on the control of phosphorus release from sediment by the in situ active capping method. In this study, the impact of capping mode on the restraint of phosphorus migration from sediment into overlying water (OW) by lanthanum hydroxide (LH) was studied. Under no suspended particulate matter (SPM) deposition condition, LH capping effectively restrained the liberation of endogenous phosphorus into OW during anoxia, and the inactivation of diffusive gradient in thin film-unstable phosphorus (UPDGT) and mobile phosphorus (PMobile) in the topmost sediment served as a significant role in the restraint of endogenous phosphorus migration into OW by LH capping. Under no SPM deposition, although the transformation of capping mode from the single high dose capping to the multiple smaller doses capping had a certain negative impact on the restraint efficiency of endogenous phosphorus liberation to OW by LH in the early period of application, it increased the stability of phosphorus in the static layer in the later period of application. Under SPM deposition condition, LH capping had the capability to mitigate the risk of endogenous phosphorus liberation into OW under anoxia conditions, and the inactivation of UPDGT and PMobile in the topmost sediment was a significant mechanism for the control of sediment phosphorus liberation into OW by LH capping. Under SPM deposition condition, the change in the covering mode from the one-time high dose covering to the multiple smaller doses covering decreased the efficiency of LH to limit the endogenous phosphorus transport into OW in the early period of application, but it increased the performance of LH to restrain the sedimentary P liberation during the later period of application. The results of this work suggest that the multiple LH capping is a promising approach for controlling the internal phosphorus loading in freshwater bodies where SPM deposition often occurs in the long run.
Collapse
Affiliation(s)
- Fujun Sun
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Yanhui Zhan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Jianwei Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|