1
|
Zhang L, Zhang L, Wang L, Hou D. Biogeochemical interaction between thallium (Tl) and schwertmannite in acidic environment and the anti-dissolution mechanisms of Tl(I)-coprecipitated schwertmannite. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136764. [PMID: 39637806 DOI: 10.1016/j.jhazmat.2024.136764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Highly toxic thallium (Tl) can be released into the environment through acid mine drainage (AMD). However, our knowledge on the biogeochemical processes of Tl in such acidic, iron (Fe)-rich environments is limited. Here, we show that schwertmannite, a naturally formed Fe(III) mineral in AMD, can effectively immobilize Tl(I) through coprecipitation and adsorption. Tl(I) coprecipitation into schwertmannite removed a large portion of Tl(I) under a wide range of initial Tl(I) concentrations (0.01-1.0 mg/L) and within a short duration (48 h). The saturated adsorption capacities of the biosynthetic and chemically synthesized schwertmannite for Tl(I) (1.0 mg/L) were 1.96 and 1.59 mg/g, respectively, under acidic conditions (pH=3.0). The kinetic dissolution results indicated that biogenic Tl-coprecipitated schwertmannite exhibited greater stability, which was attributed mainly to the elevated extent of Tl oxidation and enhanced crystallinity of Tl-bearing schwertmannite. The extended X-ray absorption fine structure (EXAFS) analyses revealed that the incorporation of Tl into schwertmannite involves the heterovalent substitution of Fe(III) by the formation of double-corner sharing linkages between the Tl-O tetrahedra and Fe-O octahedra. These results suggested that coprecipitation combined with adsorption can achieve retention of Tl in acidic environment throughout the entire mineralization process of schwertmannite, which provides a comprehensive understanding of biogeochemical fate of Tl in AMD-affected areas.
Collapse
Affiliation(s)
- Liangjing Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Liping Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Zhuang W, Zhu T, Li F, Jing C, Ying SC, Abernathy MJ, Song J, Yin H. New insights into thallium(I) behaviors at birnessite surfaces: Effects of an organic buffer and goethite. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136340. [PMID: 39486338 DOI: 10.1016/j.jhazmat.2024.136340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/19/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Understanding the environmental behavior of thallium (Tl) is crucial due to its high toxicity and increasing anthropogenic presence. This study investigated the adsorption and redox behaviors of Tl(I) with acid birnessite (AcBi) in the presence of 1,4-piperazine-diethanesulfonic acid (PIPES) and goethite under diffusion-limited conditions using Donnan reactors in aerobic and anaerobic environments. Our findings indicate that Tl(I) preferentially adsorbs onto AcBi, with capacities 20 to 100 times higher than onto goethite, even when AcBi is partial reduced by PIPES. No net Tl(I) oxidation occurred in the Donnan reactors, likely due to complex electron transfer processes between Tl(I), birnessite, and PIPES. Any Tl(III) generated from Tl(I) oxidation by birnessite was rapidly reduced back to Tl(I) by PIPES. This was confirmed in batch experiments where reduced Tl(III) on birnessite surfaces and in Tl(III) salts. These findings highlight the need to assess the impact of Good's buffers on redox reactions involving manganese oxides and Tl, while also providing insights into the competitive retention of Tl on manganese and iron (hydr)oxides, with implications for Tl mobility and bioavailability in natural environments.
Collapse
Affiliation(s)
- Wen Zhuang
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China; School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
| | - Tianqiang Zhu
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Institute of Eco-environmental Forensics, Shandong University, Qingdao, Shandong 266237, China
| | - Feng Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Institute of Eco-environmental Forensics, Shandong University, Qingdao, Shandong 266237, China
| | - Chuanyong Jing
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Samantha C Ying
- Environmental Toxicology Program and Department of Environmental Science, University of California-Riverside, Riverside, CA 92521, United States
| | - Macon J Abernathy
- Environmental Toxicology Program and Department of Environmental Science, University of California-Riverside, Riverside, CA 92521, United States; SLAC National Accelerator Laboratory, Stanford University, San Francisco, CA 94305, United States
| | - Jinming Song
- Key Laboratory of Marine Ecology and Environmental Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| | - Hui Yin
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Ministry of Ecology and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
3
|
Yuan W, She J, Lin J, Lin K, Zhong Q, Xiong X, Cao H, Zeng X, Wang J, Liu J. Thallium isotopic fractionation in soils from a historic HgTl mining area: New insights on thallium geochemistry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173878. [PMID: 38866153 DOI: 10.1016/j.scitotenv.2024.173878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
Thallium (Tl), a highly toxic heavy metal, which may pose significant environmental threats due to extensive discharge from anthropogenic activities. It is crucial to understand geochemical behavior of Tl in soils for initiating proper measures for Tl pollution control. For this purpose, transport behavior of Tl and its dominant factors in soils collected from a typically Tl-enriched depth profile, surrounding a historical tailing dump near an independent HgTl mine area in China, were investigated by using Tl isotope compositions. Results showed that an overall enrichment of Tl (48.68-375.21 mg/kg) was accompanied with As elevation (135.00-619.00 mg/kg) in the whole depth profile, and Tl and As exhibited co-migration behavior with Fe, S, K, and Rb. Geochemical fractionation of Tl unveiled by sequential extraction further indicated that Mn-/Fe-bearing minerals and clay minerals act as main hosts of Tl in the studied soils. Thallium isotopic composition and its fractionation pattern further revealed that the major contributors to high Tl levels in the depth profile were tailing and lorandite minerals, with mean contribution rate of 51.99% and 42.47%, respectively. These findings facilitate the understanding of Tl transport behavior in highly contaminated environment, providing valuable insights for developing new technologies in mining waste treatment and historical mine reclamation.
Collapse
Affiliation(s)
- Wenhuan Yuan
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Jingye She
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Jingfen Lin
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Ke Lin
- Earth Observatory of Singapore and Asian School of the Environment, Nanyang Technological University, Singapore 639798, Singapore
| | - Qiaohui Zhong
- State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xinni Xiong
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Huimin Cao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Xuan Zeng
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Jin Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China.
| |
Collapse
|
4
|
Liu Z, Dai X, He J, Lin M, Luo H, Fan L, Zhang K, Ma D, Wang J, Chen W. Amphichdiral enhancement on singlet oxygen generation and stable thallium immobilization using iron-driven copper oxide. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121524. [PMID: 38897082 DOI: 10.1016/j.jenvman.2024.121524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/30/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Thallium (Tl) as a prominent priority contaminant in aquatic environment necessitates rigorous regulation. However, limited horizon devotes the impact of selective oxidation on the process of thallium purification. In this study, selective active radical of singlet oxygen (1O2) was continually generated for Tl(Ⅰ) oxidation accomplished with efficient Tl(Ⅲ) immobilization using iron-driven copper oxide (CuFe)/peroxymonosulfate (PMS). Fe-doping changed the active center of electronic structure for enhancing the catalytic and adsorptive reactivities, and installed magnetism for solid-liquid separation. Rapid reaction rate (0.253 min-1) coupled with vigorous elimination efficiency (98.32%) relied on electrostatic attraction, surface complexation, and H-bond interaction. EPR and XPS analyses demonstrated that the synergistic effects of ≡ Cu(Ⅰ)/≡Cu(Ⅱ) and ≡ Fe(Ⅲ)/≡Fe(Ⅱ) redounded to the sustained generation of 1O2 through the pathway of PMS → •O2- → 1O2, and 1O2 exploited an advantage to selectively oxidize Tl(Ⅰ) to Tl(Ⅲ). 3D isosurface cubic charts revealed that the immobilizing ability of Tl(Ⅲ) hydrate for CuFe was notably superior to that of Tl(Ⅲ) hydrate for CuO and Tl(Ⅰ) hydrate for CuO/CuFe, which further attested surface reactivity promoted stable immobilization form. This work develops the continuous generation of 1O2 and stable immobilization with the goal of efficiently cleansing Tl-containing wastewater.
Collapse
Affiliation(s)
- Zhujun Liu
- Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Sichuan Agricultural University, Chengdu, 611830, China; College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China
| | - Xinning Dai
- Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Sichuan Agricultural University, Chengdu, 611830, China; College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China
| | - Jun He
- Environmental Monitoring Station of Hanyuan, Ya'an, 625300, China
| | - Mengyi Lin
- Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Sichuan Agricultural University, Chengdu, 611830, China; College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China
| | - Hongbing Luo
- Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Sichuan Agricultural University, Chengdu, 611830, China; College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China
| | - Liangqian Fan
- Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Sichuan Agricultural University, Chengdu, 611830, China; College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China
| | - Ke Zhang
- Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Sichuan Agricultural University, Chengdu, 611830, China; College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China
| | - Dandan Ma
- Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Sichuan Agricultural University, Chengdu, 611830, China; College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China
| | - Jun Wang
- College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China
| | - Wei Chen
- Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Sichuan Agricultural University, Chengdu, 611830, China; College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China.
| |
Collapse
|
5
|
Li F, Yin H, Zhu T, Zhuang W. Understanding the role of manganese oxides in retaining harmful metals: Insights into oxidation and adsorption mechanisms at microstructure level. ECO-ENVIRONMENT & HEALTH (ONLINE) 2024; 3:89-106. [PMID: 38445215 PMCID: PMC10912526 DOI: 10.1016/j.eehl.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/08/2024] [Indexed: 03/07/2024]
Abstract
The increasing intensity of human activities has led to a critical environmental challenge: widespread metal pollution. Manganese (Mn) oxides have emerged as potentially natural scavengers that perform crucial functions in the biogeochemical cycling of metal elements. Prior reviews have focused on the synthesis, characterization, and adsorption kinetics of Mn oxides, along with the transformation pathways of specific layered Mn oxides. This review conducts a meticulous investigation of the molecular-level adsorption and oxidation mechanisms of Mn oxides on hazardous metals, including adsorption patterns, coordination, adsorption sites, and redox processes. We also provide a comprehensive discussion of both internal factors (surface area, crystallinity, octahedral vacancy content in Mn oxides, and reactant concentration) and external factors (pH, presence of doped or pre-adsorbed metal ions) affecting the adsorption/oxidation of metals by Mn oxides. Additionally, we identify existing gaps in understanding these mechanisms and suggest avenues for future research. Our goal is to enhance knowledge of Mn oxides' regulatory roles in metal element translocation and transformation at the microstructure level, offering a framework for developing effective metal adsorbents and pollution control strategies.
Collapse
Affiliation(s)
- Feng Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
- Institute of Eco-environmental Forensics, Shandong University, Qingdao 266237, China
| | - Hui Yin
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Ministry of Ecology and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Tianqiang Zhu
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
- Institute of Eco-environmental Forensics, Shandong University, Qingdao 266237, China
| | - Wen Zhuang
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
- National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Institute of Eco-environmental Forensics, Shandong University, Qingdao 266237, China
| |
Collapse
|
6
|
Li Y, Zhang C, Yang M, Liu J, He H, Ma Y, Arai Y. Effects of carbonate on ferrihydrite transformation in alkaline media. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:288-297. [PMID: 38258502 DOI: 10.1039/d3em00469d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Alkaline media widely exist in natural and engineered systems such as semiarid/arid areas, radioactive waste sites, and mine tailings. In these settings, the commonly occurring iron (oxyhydr)oxides differed in their ability to influence the fate of nutrients and contaminants. Due to the substantially increased atmospheric carbon dioxide (CO2) concentration, carbonate stands to increase in these media. However, how increasing carbonate affects the transformation of poorly crystalline iron (oxyhydr)oxides (e.g., two-line ferrihydrite) under alkaline conditions still remains unclear. Here, kinetics of ferrihydrite transformation were evaluated at pH ∼10 as a function of [carbonate] = 0-286 mM using synchrotron-based X-ray and vibrational spectroscopic techniques. The results showed that carbonate slowed down ferrihydrite transformation slightly and suppressed goethite formation, but promoted hematite formation regardless of its concentration. At low carbonate concentration (11.42 mM), the effect of carbonate on product formation was obvious due to the weak inner-sphere complex; however, at high carbonate concentration (80-286 mM), the effect was retarded because of the adsorption equilibrium of carbonate as well as the initial carbonate adsorption followed by desorption. Moreover, carbonate modified the morphology of hematite from rhombic to ellipsoidal to honeycomb and goethite from rod-like to needle-like to spindle-like due to the inner-sphere adsorption-desorption of carbonate and adsorption of hydroxyl ions on reactive sites of iron (oxyhydr)oxides in alkaline media. The results suggest that the concurrently increasing carbonate with enhanced atmospheric CO2 could control the transformation and occurrence of iron (oxyhydr)oxides in natural and engineered environments and have important implications for the biogeochemical cycles of iron and carbon.
Collapse
Affiliation(s)
- Ying Li
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China.
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chaoqun Zhang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Meijun Yang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jing Liu
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Taipa, 999078, Macau, China
| | - Hongping He
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yibing Ma
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China.
| | - Yuji Arai
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
7
|
Liu J, Qiu R, Wei X, Xiong X, Ren S, Wan Y, Wu H, Yuan W, Wang J, Kang M. MnFe 2O 4-biochar decreases bioavailable fractions of thallium in highly acidic soils from pyrite mining area. ENVIRONMENTAL RESEARCH 2024; 241:117577. [PMID: 37923109 DOI: 10.1016/j.envres.2023.117577] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/09/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
The prevalence of toxic element thallium (Tl) in soils is of increasing concern as a hidden hazard in agricultural systems and food chains. In the present work, pure biochar (as a comparison) and jacobsite (MnFe2O4)-biochar composite (MFBC) were evaluated for their immobilization effects in Tl-polluted agricultural soils (Tl: ∼10 mg/kg). Overall, MFBC exhibited an efficient effect on Tl immobilization, and the effect was strengthened with the increase of amendment ratio. After being amended by MFBC for 15 and 30 days, the labile fraction of Tl in soil decreased from 1.55 to 0.97 mg/kg, and from 1.51 to 0.88 mg/kg, respectively. In addition, pH (3.05) of the highly acidic soil increased to a maximum of 3.97 after the immobilization process. Since the weak acid extractable and oxidizable Tl were the preponderantly mitigated fractions and displayed a negative correlation with pH, it can be inferred that pH may serve as one of the most critical factors in regulating the Tl immobilization process in MFBC-amended acidic soils. This study indicated a great potential of jacobsite-biochar amendment in stabilization and immobilization of Tl in highly acidic and Tl-polluted agricultural soils; and it would bring considerable environmental benefit to these Tl-contaminated sites whose occurrence has significantly increased in recent decades near the pyrite or other sulfide ore mining and smelting area elsewhere.
Collapse
Affiliation(s)
- Juan Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Ruoxuan Qiu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xudong Wei
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE) University of Padova, Agripolis Campus, Viale dell'Università, 16, 35020, Legnaro, PD, Italy
| | - Xinni Xiong
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Shixing Ren
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yuebing Wan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Hanyu Wu
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Wenhuan Yuan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jin Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Mingliang Kang
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai, 519082, China.
| |
Collapse
|
8
|
Liu Y, Chen W, Huang Y, Li Z, Li C, Liu H, Huangfu X. Mechanisms for thallium(I) adsorption by zinc sulfide minerals under aerobic and anaerobic conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132745. [PMID: 37827100 DOI: 10.1016/j.jhazmat.2023.132745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 10/14/2023]
Abstract
The highly toxic heavy metal thallium is widely distributed in sulfide ores and released into the environment by sulfide mining. However, the interface between the sulfide minerals and Tl(I) is unclear. In this study, the capacity for adsorption of thallium(I) by a common sulfide mineral (zinc sulfide) was investigated in aerobic and anaerobic environments, which revealed three mechanisms for adsorption on the ZnS surface (surface complexation, electrostatic action and oxidation promotion). Batch experiments indicated that the Tl(I) adsorption capacity of ZnS in an aerobic environment was approximately 9.3% higher than that in an anaerobic environment and was positively correlated with the pH. The adsorption kinetic data showed good fits with the pseudosecond-order model and the Freundlich isotherm model. The Tl(I) adsorption mechanism varied in different oxidative and pH environments. XPS, FTIR, and EDS results implied that complexation with surface hydroxyl groups was involved in the adsorption process. pH experiments and zeta analyses suggested that electrostatic attraction was also involved. Surface complexation and electrostatic attraction were the dominant mechanisms at pH values above 6. Furthermore, oxidative dissolution of ZnS and hydrolysis of Zn2+ enhanced the complexation with hydroxyl groups on the mineral surface and facilitated Tl adsorption. In this study, this interface mechanism provided new insights into thallium migration in sulfurized mineral environments in aerobic and anaerobic transition regions.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Wanpeng Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Yuheng Huang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Zhiheng Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Changsheng Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Hongxia Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|