1
|
Kanakaraju D, Glass BD, Goh PS. Advanced oxidation process-mediated removal of pharmaceuticals from water: a review of recent advances. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36547-5. [PMID: 40434594 DOI: 10.1007/s11356-025-36547-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 05/15/2025] [Indexed: 05/29/2025]
Abstract
Pharmaceutical compounds have raised significant environmental concerns, due to their persistent and non-biodegradable nature. Addressing their presence in the environment has become a priority, leading to the application of various removal treatment techniques. Advanced oxidation processes (AOPs) undoubtedly have emerged as highly effective removal techniques, as evidenced by the growing body of work in this area. This review offers an overview of the recent advances in the development of AOPs for treating pharmaceuticals and their by-products. Current trends and discoveries reported in diverse AOP studies have been scrutinized and are presented. Furthermore, emphasis is placed on the use of TiO2-mediated photocatalysis, which stands out as one of the most explored AOPs for pharmaceutical remediation. Performance aspects of TiO2 photocatalytic treatment are explored and discussed encompassing both commercially available and synthesized TiO2, as well as engineered TiO2-based materials (e.g. activated carbon, polymers, metals and non-metals), all aimed at removal of pharmaceutical compounds from the environment. The review concludes by summarizing key findings and offers insights into directions for future research.
Collapse
Affiliation(s)
- Devagi Kanakaraju
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Beverley D Glass
- Pharmacy, College of Medicine and Dentistry, James Cook University, Townsville, Qld, 4811, Australia
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, 81310, Johor Bahru, Malaysia
| |
Collapse
|
2
|
Li L, Jing Y, Zhang J, Guo J. Photocatalytic degradation of NO by MnO 2 catalyst: The decisive relationship between crystal phase, morphology and activity. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137228. [PMID: 39837031 DOI: 10.1016/j.jhazmat.2025.137228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/04/2025] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
This study investigates the critical relationship between the crystal phase, morphology, and photocatalytic activity of MnO2. The δ-MnO2 nanosheets, characterized by multiple exposed crystal planes forming junctions, exhibit optimized optical and electrical properties. Oxygen vacancy concentrations were observed in the order δ-MnO2 > γ-MnO2 > α-MnO2, with corresponding increases in band gap width from 1.38 eV (δ-MnO₂) to 1.68 eV (α-MnO₂). The δ-MnO2 nanosheets achieved over 80 % NO removal efficiency and effectively suppressed the production of NO2 byproducts, outperforming α-MnO2 nanorods and γ-MnO2 nanospheres. The adsorption energy of O₂ followed the trend δ-MnO2 > γ-MnO2 > α-MnO2, while the adsorption energy of NO was lowest on δ-MnO2, facilitating its interaction with reactive species such as •O2⁻ and •OH. For γ-MnO2, NO directly reacted with •O2⁻. The findings highlight the dependence of MnO2 photocatalytic performance on its crystal phase and morphology, with δ-MnO2 effectively inhibiting photogenerated electron-hole recombination due to its superior properties. This work presents a straightforward approach to designing high-performance transition metal photocatalysts through crystal phase and morphology control, offering valuable insights for future photocatalyst research.
Collapse
Affiliation(s)
- Lingtong Li
- School of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yue Jing
- School of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jianbei Zhang
- School of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jiaxiu Guo
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, Sichuan 610065, China; National Engineering Research Center for Flue Gas Desulfurization, Chengdu, Sichuan 610065, China; Industrial Technology Research Institute, Sichuan University, Yibin 644004, China.
| |
Collapse
|
3
|
Liu Q, Wang Z, Chang T, Wang T, Wang Y, Zhao Z, Li M, Liu J. Insight into enhanced tetracycline photodegradation by hematite/biochar composites: Roles of charge transfer, biochar-derived dissolved organic matter and persistent free radicals. BIORESOURCE TECHNOLOGY 2025; 420:132118. [PMID: 39870140 DOI: 10.1016/j.biortech.2025.132118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
The combination of hematite and biochar significantly accelerated tetracycline (TC) removal under visible light irradiation. The kinit of TC removal with Hem/BC-5 reached 0.103 min-1, 3.8 and 6.1 times faster than those with hematite and biochar, attributed to boosting free radicals. The enhanced light absorption and charge transfer helped generate more H2O2 and •OH through 2e- oxygen reduction and direct valence band (VB) oxidation. Persistent free radicals (PFRs) on biochar helped generate H2O2. Biochar as electron shutter facilitated Fe3+/Fe2+ redox cycling and triggered more efficient photo-Fenton reaction. Biochar-derived dissolved organic matter (DOM) helped generate 3DOM*, a reactive intermediate to produce H2O2, •OH, and 1O2. Hem/BC composites have excellent photoactivity for the degradation of TC in different water matrixes under visible light irradiation. The degradation pathway was proposed based on theoretical calculation and detected degradation intermediates. These findings contribute to the development of biochar-based catalysts for organic pollutants removal.
Collapse
Affiliation(s)
- Qian Liu
- National&Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding 071002, China
| | - Zhuoyue Wang
- National&Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding 071002, China
| | - Ting Chang
- National&Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding 071002, China
| | - Tingxin Wang
- National&Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding 071002, China.
| | - Yafeng Wang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science &Technology, Kunming, 650500, China
| | - Zhilei Zhao
- National&Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding 071002, China
| | - Meifeng Li
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton T6G2R3, Canada
| | - Jue Liu
- National&Local Joint Engineering Research Center of Metrology Instrument and System, College of Quality and Technical Supervision, Hebei University, Baoding 071002, China.
| |
Collapse
|
4
|
Liu K, Ni W, Zhang Q, Huang X, Luo T, Huang J, Zhang H, Zhang Y, Peng F. Based on T.E.S.T toxicity prediction and machine learning to forecast toxicity dynamics in the photocatalytic degradation of tetracycline. Phys Chem Chem Phys 2024; 26:28266-28273. [PMID: 39499539 DOI: 10.1039/d4cp04037f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The integration of photocatalysis and biological treatment provides an effective strategy for controlling antibiotic contamination, which requires precise monitoring of toxicity changes during the photocatalytic process. In this study, nanoscale TiO2 (P25) was employed to degrade tetracycline (TC) under full-spectrum irradiation, with O2 identified as a crucial reactant for the generation reactive oxygen species (ROS). The toxicity simulation results of the degradation intermediates were closely correlated with the predictions of T.E.S.T software. By analyzing the content of intermediates under different experimental conditions, we developed a machine learning model utilizing the random forest algorithm with a correlation coefficient of R2 = 0.878 and a mean absolute error of MAE = 0.02. The model can track the changes of photocatalytic intermediates, in combination with toxicity simulation, which facilitates the prediction of toxicity at different degradation stages, thus allowing selection of the optimal timing of biological treatment interventions.
Collapse
Affiliation(s)
- Kaihang Liu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230039, P. R. China.
| | - Wenhui Ni
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230039, P. R. China.
| | - Qiaoyu Zhang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230039, P. R. China.
| | - Xu Huang
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China
| | - Tao Luo
- Anhui Institute of Ecological Civilization, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China.
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China
- Pollution Control and Resource Utilization in Industrial Parks Joint Laboratory of Anhui Province, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China
| | - Jian Huang
- Anhui Institute of Ecological Civilization, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China.
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China
- Pollution Control and Resource Utilization in Industrial Parks Joint Laboratory of Anhui Province, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China
| | - Hua Zhang
- Anhui Institute of Ecological Civilization, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China.
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China
- Pollution Control and Resource Utilization in Industrial Parks Joint Laboratory of Anhui Province, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China
| | - Yong Zhang
- Anhui Institute of Ecological Civilization, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China.
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China
- Pollution Control and Resource Utilization in Industrial Parks Joint Laboratory of Anhui Province, Anhui Jianzhu University, Hefei, Anhui 230601, P. R. China
| | - Fumin Peng
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230039, P. R. China.
| |
Collapse
|
5
|
Zhang L, Wei H, Wang C, Cheng Y, Li Y, Wang Z. Distribution and ecological risk assessment of antibiotics in different freshwater aquaculture ponds in a typical agricultural plain, China. CHEMOSPHERE 2024; 361:142498. [PMID: 38825250 DOI: 10.1016/j.chemosphere.2024.142498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/16/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Freshwater aquaculture serves as a significant focal point for antibiotic contamination, yet understanding antibiotic distribution across different aquaculture models and stages remains limited. This study evaluated antibiotic pollution in three distinct freshwater aquaculture models: rice-crayfish coculture, fish aquaculture, and crab-crayfish aquaculture, during various aquaculture stages. Of the 33 target antibiotics, 16 antibiotics were detected, with the total concentrations ranging from 111.81 ng/L to 15,949.05 ng/L in water and 10.11 ng/g to 8986.30 ng/g in sediment. Among these antibiotics, erythromycin and lomefloxacin are prohibited for use in Chinese aquaculture. Dominant antibiotics in water included lincomycin, enrofloxacin, and enoxacin, whereas in sediment, oxytetracycline and erythromycin were predominant. Notably, lincomycin emerged as a dominant antibiotic in aquaculture for the first time. The concentrations of these dominant antibiotics were high compared to other aquaculture settings and exhibited elevated ecological risk. Critical periods for antibiotic contamination in water and sediment were found to be incongruent, occurring during the rainy season in July for water and the dry season in October for sediment. Notably, the rice-crayfish coculture model exerts a good effect in reducing antibiotic pollution. Overall, these findings offer valuable evidence for the healthful and sustainable advancement of aquaculture.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huimin Wei
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cong Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, China
| | - Yiting Cheng
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yong Li
- China Metallurgical Geology Bureau (CMGB) Bureau-1 (Hebei) Analysis & Technology Co., Ltd, Langfang, 065201, China
| | - Zhi Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, China.
| |
Collapse
|
6
|
Wang H, Li M, You Z, Chen Y, Liu Y. An innovative Zn 3In 2S 6/ZnIn 2S 4 homojunction photocatalyst with enhanced interfacial charge transfer for the highly efficient degradation of tetracycline under visible radiation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121605. [PMID: 38944962 DOI: 10.1016/j.jenvman.2024.121605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/09/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
The interfacial charge transfer ability is a decisive factor influencing the photocatalytic performance of composite photocatalysts. Compared with heterojunctions that combine two or more semiconductors with different properties, homojunctions that combine two semiconductors with similar properties can accelerate the interfacial charge shift and achieve higher photocatalyticability. In this study, a Zn3In2S6/ZnIn2S4 homojunction photocatalyst (ZIS-5) with a Zn3In2S6 to ZnIn2S4 molar ratio of 5:1 was synthesized by selecting Zn3In2S6 nano-microspheres as the substrate material and growing ZnIn2S4 flocs on the nano-microspheres. The photocatalytic performance of the ZIS-5 homojunction was assessed by using tetracycline (TC) as a typical pollutant. The photocatalytic performance and mineralization rate of the ZIS-5 homojunction were significantly improved compared with those of Zn3In2S6 and ZnIn2S4, and its photocatalytic performance was increased by 10.2% and 20.9%, compared with Zn3In2S6 and ZnIn2S4, respectively, while the mineralization rate was enhanced by 22.78% and 43.28%, respectively. The results of the comparison experiment revealed that the interfacial electron transfer ability of the ZIS-5 homojunction is 1.6 times that of the g-C3N4/ZnIn2S4-5 heterojunction. The density functional theory (DFT) computation and Mott-Schottky plots verified the formation of an internal electric field. The toxicity analysis showed that the ZIS-5 homojunction system effectively reduced the toxicity of TC. This work supplies a valuable route for inventing catalysts with efficient photocatalytic performances.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Mengke Li
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Zhimin You
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| | - Yuehui Chen
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Yun Liu
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
7
|
Bai H, Yang Y, Dong M, Yuan H, Huang Y, Liu X, Ni C. Carbon defects-enriched NBC-C 3N 5@CoMn with ultrafast modulation of redox couples for efficient degradation of contaminant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121723. [PMID: 39003897 DOI: 10.1016/j.jenvman.2024.121723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024]
Abstract
The inefficiency of catalysts in sulfate radical-based advanced oxidation processes (SR-AOPs) is primarily attributed to the sluggish circulation of redox couples. Herein, a carbon defects-enriched NBC-C3N5@CoMn (NCC) was synthesized through a self-assembly approach. The carbon defects within the NCC induce the electron trap effect, thereby facilitating the efficient cycling of redox couples in photo-Fenton-like processes during contaminant degradation. This effect enables the self-regeneration of the NCC catalyst. The reductive redox couples (Co (II) and Mn (II)) are continuously regenerated following the degradation process. Within the NCC, CoMn layered double hydroxides (LDHs) act as primary active sites, promoting the generation of hydroxyl radicals (•OH), sulfate radicals (SO4•-) and singlet oxygen (1O2) through continuous electron gain and loss. Additionally, the internal electric field established within the NCC further accelerates electron transfer. Density Functional Theory (DFT) calculations confirm that the carbon defects-enriched NCC exhibits lower adsorption energies and higher electron transfer efficiencies than carbon defect-deficient NCC. This study introduces a novel photocatalyst with self-regenerating capabilities, presenting an innovative approach to regulate redox couples in SR-AOPs for sustainable degradation.
Collapse
Affiliation(s)
- He Bai
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuxiang Yang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Mengyang Dong
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hongming Yuan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Yan Huang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiangnong Liu
- Analysis Test Center, Yangzhou University, Yangzhou, 225009, China
| | - Chaoying Ni
- Department of Materials Science and Engineering, University of Delaware, DE, 19716, USA
| |
Collapse
|
8
|
Ghasemzadeh MS, Ahmadpour A. Synthesis and photodegradation performance of a heterostructure ferromagnetic photocatalyst based on MWCNTs functionalized with (3-glycidyloxypropyl)trimethoxysilane and decorated with tungsten trioxide for metronidazole and acetaminophen degradation in aqueous environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34405-4. [PMID: 39042192 DOI: 10.1007/s11356-024-34405-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
The presence of metronidazole (MNZ) and acetaminophen (ACE) in aquatic environments has raised growing concerns regarding their potential impact on human health. Incorporating various patterns into a photocatalytic material is considered a critical approach to achieving enhanced photocatalytic efficiency in the photocatalysis process. In this study, WO3 nanoparticles, which were immobilized onto ferromagnetic multi-walled carbon nanotubes that were functionalized using (3-glycidyloxypropyl)trimethoxysilane (FMMWCNTs@GLYMO@WO3), exhibited remarkable efficiency in removing MNZ and ACE (93% and 97%) in only 15 min. In addition, the new visible-light FMMWCNTs@GLYMO@WO3 nanoparticles as a magnetically separable photocatalyst were characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), EDS-mapping, vibrating sample magnetometry (VSM), thermogravimetric analysis (TGA), diffuse reflectance spectroscopy (DRS), high-performance liquid chromatography (HPLC), and total organic carbon (TOC) due to detailed studies (morphological, structural, magnetic and optical properties) of the photocatalyst. In-depth spectroscopic and microscopic characterization of the newly developed ferromagnetic FMMWCNTs@GLYMO@WO₃ (III) photocatalyst revealed a spherical morphology, with nanoparticle diameters averaging between 23 and 39 nm. Compared to conventional multiwall carbon nanotube and WO₃ photocatalysts, FMMWCNTs@GLYMO@WO₃ (III) demonstrated superior photocatalytic activity. Remarkably, it exhibited excellent reusability, maintaining its efficiency over a minimum of five cycles in the degradation of metronidazole (MNZ) and acetaminophen (ACE).
Collapse
Affiliation(s)
- Maryam Sadat Ghasemzadeh
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, P.O. Box, Mashhad, 91779-48944, Iran
- Industrial Catalysts, Adsorbents and Environment Lab., Oil and Gas Research Institute, Ferdowsi University of Mashhad, P.O. Box, Mashhad, 91779-48974, Iran
| | - Ali Ahmadpour
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, P.O. Box, Mashhad, 91779-48944, Iran.
- Industrial Catalysts, Adsorbents and Environment Lab., Oil and Gas Research Institute, Ferdowsi University of Mashhad, P.O. Box, Mashhad, 91779-48974, Iran.
| |
Collapse
|
9
|
Lykos C, Bairamis F, Efthymiou C, Konstantinou I. Synthesis and Characterization of Composite WO 3 Fibers/g-C 3N 4 Photocatalysts for the Removal of the Insecticide Clothianidin in Aquatic Media. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1045. [PMID: 38921921 PMCID: PMC11206630 DOI: 10.3390/nano14121045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Photocatalysis is a prominent alternative wastewater treatment technique that has the potential to completely degrade pesticides as well as other persistent organic pollutants, leading to detoxification of wastewater and thus paving the way for its efficient reuse. In addition to the more conventional photocatalysts (e.g., TiO2, ZnO, etc.) that utilize only UV light for activation, the interest of the scientific community has recently focused on the development and application of visible light-activated photocatalysts like g-C3N4. However, some disadvantages of g-C3N4, such as the high recombination rate of photogenerated charges, limit its utility. In this light, the present study focuses on the synthesis of WO3 fibers/g-C3N4 Z-scheme heterojunctions to improve the efficiency of g-C3N4 towards the photocatalytic removal of the widely used insecticide clothianidin. The effect of two different g-C3N4 precursors (urea and thiourea) and of WO3 fiber content on the properties of the synthesized composite materials was also investigated. All aforementioned materials were characterized by a number of techniques (XRD, SEM-EDS, ATR-FTIR, Raman spectroscopy, DRS, etc.). According to the results, mixing 6.5% W/W WO3 fibers with either urea or thiourea derived g-C3N4 significantly increased the photocatalytic activity of the resulting composites compared to the precursor materials. In order to further elucidate the effect of the most efficient composite photocatalyst in the degradation of clothianidin, the generated transformation products were tentatively identified through UHPLC tandem high-resolution mass spectroscopy. Finally, the detoxification effect of the most efficient process was also assessed by combining the results of an in-vitro methodology and the predictions of two in-silico tools.
Collapse
Affiliation(s)
- Christos Lykos
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (C.L.); (F.B.); (C.E.)
| | - Feidias Bairamis
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (C.L.); (F.B.); (C.E.)
| | - Christina Efthymiou
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (C.L.); (F.B.); (C.E.)
| | - Ioannis Konstantinou
- Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (C.L.); (F.B.); (C.E.)
- Institute of Environment and Sustainable Development, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|
10
|
Efthymiou C, Boti V, Konstantinou I, Albanis T. Aqueous fate of furaltadone: Kinetics, high-resolution mass spectrometry - based elucidation and toxicity assessment of photoproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170848. [PMID: 38340835 DOI: 10.1016/j.scitotenv.2024.170848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Furaltadone (FTD) is an antibiotic belonging to the nitrofurans group. It has been broadly used in livestock and aquaculture for therapeutic purposes, as well as for stimulating promotion. Although the European Union has imposed restrictions on the use of FTD since 1995 due to concerns regarding its toxicity, in many cases FTD has been excessively and/or illegally applied in productive animals in developing countries, because of its high efficacy and low-cost. Unlike other nitrofuran compounds, the hydrolytic and photolytic behavior of FTD in natural aquatic systems has not been thoroughly investigated. To this end, hydrolysis in different pH values and photolysis in aquatic environment, including lake, river and sea water have been both examined. Hydrolysis was found to have an insignificant impact on degradation of FTD in the aquatic environment relevant pH values, whereas indirect photolysis proved to be the main route of its elimination. The identification of tentative photoproducts (PPs) was performed using ultra high performance liquid chromatography coupled to hybrid LTQ/Orbitrap high resolution mass spectrometry. A possible pathway for photolytic transformation of FTD was proposed. Additionally, in silico simulations were used to evaluate the toxicity such as the mutagenicity of FTD and PPs. Complementary to the low-cost and time-limited simulations, an in vitro method (Vibrio Fischeri bioluminescence) was also used to assess ecotoxicity.
Collapse
Affiliation(s)
| | - Vasiliki Boti
- Department of Chemistry, University of Ioannina, Ioannina 45110, Greece; Institute of Environment and Sustainable Development, University Research and Innovation Center, Ioannina 45110, Greece; Unit of Environmental, Organic and Biochemical high-resolution analysis-Orbitrap-LC-MS, University of Ioannina, Ioannina 45110, Greece.
| | - Ioannis Konstantinou
- Department of Chemistry, University of Ioannina, Ioannina 45110, Greece; Institute of Environment and Sustainable Development, University Research and Innovation Center, Ioannina 45110, Greece; Unit of Environmental, Organic and Biochemical high-resolution analysis-Orbitrap-LC-MS, University of Ioannina, Ioannina 45110, Greece
| | - Triantafyllos Albanis
- Department of Chemistry, University of Ioannina, Ioannina 45110, Greece; Institute of Environment and Sustainable Development, University Research and Innovation Center, Ioannina 45110, Greece; Unit of Environmental, Organic and Biochemical high-resolution analysis-Orbitrap-LC-MS, University of Ioannina, Ioannina 45110, Greece
| |
Collapse
|
11
|
Heng Y, Fang Z, Li J, Luo L, Zheng M, Huang H. Defective metal-organic framework derived from the waste plastic bottles for rapid and efficient nitroimidazole antibiotics removal. J Colloid Interface Sci 2023; 650:836-845. [PMID: 37450972 DOI: 10.1016/j.jcis.2023.07.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/22/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
In order to alleviate the pressure on the ecological environment and human health caused by wastewater of nitroimidazole antibiotics and poly(ethylene terephthalate) (PET) plastic waste, we propose a strategy of using defective MIL-68(Al) (d-MIL-68(Al)) derived from waste PET plastic for dimetridazole (DMZ) capture. The resulting d-MIL-68(Al) exhibits an excellent adsorption capacity of 555.6 mg g-1, which is three times of pristine MIL-68(Al) (181.8 mg g-1), demonstrating that the defective structures in d-MIL-68(Al) play a crucial role in the adsorption process. Remarkably, d-MIL-68(Al) can remove nearly 97% of DMZ in the first 10 s, and the removal efficiency reached 99% after adsorption equilibrium, affording a record kinetic rate constant k2 (2.84 g mg-1 min-1). In short, d-MIL-68(Al) possesses both an ultrafast adsorption rate and outstanding adsorption capacity toward DMZ compared with reported adsorbents. Mechanism analysis reveals that the excellent DMZ adsorption performances can be ascribed to the abundant active sites caused by defective structures, as well as the π-π stacking and hydrogen bonding interactions between MOF and DMZ. Hence, d-MIL-68(Al) derived from waste PET plastic is an efficient porous adsorbent for rapid DMZ removal, which not only possesses great potential for wastewater treatment, but also reduces the harmful PET plastic waste, reflecting the concept of sustainable development.
Collapse
Affiliation(s)
- Yu Heng
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Zhi Fang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Jian Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China.
| | - Liqiong Luo
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
| | - Mingze Zheng
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Hongliang Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
12
|
Zeng Y, Zhuo Q, Dai L, Guan B. Mn anchored zeolite molecular nest for enhanced catalytic ozonation of cephalexin. CHEMOSPHERE 2023:139058. [PMID: 37257654 DOI: 10.1016/j.chemosphere.2023.139058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/20/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
The molecular nest structured catalysts have demonstrated better performance than the traditional supported catalysts. However, they have not been tried in antibiotics or other organic pollutants removal from water by advanced oxidation processes (AOPs). Here we synthesized Mn anchored zeolite molecular nest (Mn@ZN) for the catalytic ozonation of cephalexin (CLX), which is the widely used antibiotic and also a refractory pollutant in water. The ozonation catalyzed by Mn@ZN achieves 97% of CLX degradation in only 2 min and a reaction rate constant of 0.2454 L mg-1·s-1, which is 79.2 times higher than that of the non-catalytic ozonation. Even after ten cycles, the 0.46Mn@ZN/O3 still achieves a CLX degradation efficiency higher than 88% in 2 min, presenting an excellent stability. Mn ions stabilized by the molecular nests facilitate Lewis acid sites and oxygen vacancies, providing active sites for O3 sorption and decomposition into ·O2- and 1O2 through electrons transfer for the radical reaction with CLX. DFT calculation indicates that both the oxygen vacancy formation energy and the O3 adsorption energy of Mn@ZN are reduced by the Mn species introduction. This study finds a fascinating catalyst of Mn@ZN for the catalytic ozonation of antibiotics, and also a smart design strategy for zeolite confined metals catalysts for water treatment.
Collapse
Affiliation(s)
- Yaxiong Zeng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 320013, China
| | - Qizheng Zhuo
- School of Resources and Civil Engineering, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Liyan Dai
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 320013, China
| | - Baohong Guan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 320058, China.
| |
Collapse
|