1
|
Lin Q, Xi S, Cheng B, Jiang J, Zan F, Tang Y, Li Y, Khanal SK, Wang Z, Chen G, Guo G. Electrogenerated singlet oxygen and reactive chlorine species enhancing volatile fatty acids production from co-fermentation of waste activated sludge and food waste: The key role of metal oxide coated electrodes. WATER RESEARCH 2024; 260:121953. [PMID: 38901317 DOI: 10.1016/j.watres.2024.121953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
Electrochemical pretreatment (EPT) has shown to be superior in improving acidogenic co-fermentation (Co-AF) of waste activated sludge (WAS) and food waste (FW) for volatile fatty acids (VFAs). However, the influence of EPT electrode materials on the production of electrogenerated oxidants (such as singlet oxygen (1O2) and reactive chlorine species (RCS)), as well as their effects on properties of electrodes, the microbial community structure and functional enzymes remain unclear. Therefore, this study investigated the effects of various metal oxide coated electrodes (i.e., Ti/PbO2, Ti/Ta2O5-IrO2, Ti/SnO2-RuO2, and Ti/IrO2-RuO2) on EPT and subsequent Co-AF of WAS-FW. The results showed that EPT with Ti/PbO2, Ti/Ta2O5-IrO2, Ti/SnO2-RuO2 and Ti/IrO2-RuO2 electrodes generated 165.3-848.2 mg Cl2/L of RCS and 5.643 × 1011-3.311 × 1012 spins/mm3 of 1O2, which significantly enhanced the solubilization and biodegradability of WAS-FW by 106.4 %-233.6 % and 177.3 %-481.8 %, respectively. Especially with Ti/Ta2O5-IrO2 as the electrode material, an appropriate residual RCS (2.0-10.4 mg Cl2/L) remained in Co-AF step, resulted in hydrolytic and acidogenic bacteria (e.g., Prevotella_7, accounting for 78.9 %) gradually become dominant rather than methanogens (e.g., Methanolinea and Methanothrix) due to their different tolerance to residual RCS. Meanwhile, the functional gene abundances of hydrolytic and acidogenic enzymes increased, while the methanogenic enzymes deceased. Consequently, this reactor produced the highest VFAs up to 545.5 ± 36.0 mg COD/g VS, which was 101.8 % higher than that of the Control (without EPT). Finally, the economic analysis and confirmatory experiments further proved the benefits of WAS-FW Co-AF with EPT.
Collapse
Affiliation(s)
- Qingshan Lin
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China; Chongqing Key Laboratory for Resource Utilization of Heavy Metal Wastewater, Chongqing University of Arts and Sciences, Yongchuan 402160, PR China
| | - Shihao Xi
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Boyi Cheng
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Jinqi Jiang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Feixiang Zan
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Yuanzhe Tang
- Chongqing Key Laboratory for Resource Utilization of Heavy Metal Wastewater, Chongqing University of Arts and Sciences, Yongchuan 402160, PR China
| | - Yeqing Li
- College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, China
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering (MBBE), University of Hawaii at Mānoa, Honolulu, USA
| | - Zongping Wang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Gang Guo
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China.
| |
Collapse
|
2
|
Liu F, Cheng W, Xu J, Wan T, Wang M, Ren J, Ning M, Zhang H, Zhou X. Enhancing short-chain fatty acids production via acidogenic fermentation of municipal sewage sludge: Effect of sludge characteristics and peroxydisulfate pre-oxidation. Biotechnol J 2024; 19:e2300540. [PMID: 38472098 DOI: 10.1002/biot.202300540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 03/14/2024]
Abstract
This study first employed a combined pretreatment of low-dose peroxy-disulfate (PDS) and initial pH 10 to promote short-chain fatty acids (SCFAs) production via acidogenic fermentation using different types of sewage sludge as substrates. The experimental results showed that the yield of maximal SCFAs and acetate proportion after the combined pretreatment were 1513.82 ± 28.25 mg chemical oxygen demand (COD)/L and 53.64%, and promoted by 1.28 and 1.56 times higher, respectively, compared to the sole initial pH 10 pretreatment. Furthermore, in terms of the disintegration degree of sewage sludge, it increased by more than 18% with the combined pretreatment compared to the pretreatment of sole initial pH 10. Waste-activated sludge (WAS) from A2/O and Bardenpho processes were more biodegradable, explained by the 1.47- and 1.35-times higher disintegration rate than those from oxidation ditch and they favored acetate dominant fermentation. Correlation analysis revealed a strong correlation (p ≤ 0.01) between SCFAs production and soluble COD, total proteins, proteins in soluble-extracellular polymeric substances (SEPS), total polysaccharides, and polysaccharides in SEPS. Mechanism explorations showed that preoxidation with PDS enhanced the solubilization and biodegradability of complex substrates, and altered the microbial community structure during the fermentation process. Firmicutes and Tetrasphaera were proven to play a key role in improving SCFA production, especially in promoting acetate production by converting additional SCFAs into acetate. Additionally, the addition of PDS greatly promoted sulfur and iron-related metabolic activities. Finally, the combined pretreatment was estimated to be a cost-effective solution for reutilizing and treating Fe-sludge.
Collapse
Affiliation(s)
- Faxin Liu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Wen Cheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Jianping Xu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Tian Wan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Min Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Jiehui Ren
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Maomao Ning
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Hui Zhang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, China
| | - Xiaoping Zhou
- Power China Northeast Engineering Corporation Limited, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Kabakci Y, Kosar S, Dogan O, Uctug FG, Arikan OA. Enhancement of methane production by electrohydrolysis pretreatment for anaerobic digestion of OFMSW. ENVIRONMENTAL RESEARCH 2023; 240:117534. [PMID: 39491104 DOI: 10.1016/j.envres.2023.117534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/15/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
Hydrolysis is the most critical rate-limiting step in the anaerobic digestion (AD) process for most types of substrates. The organic fraction of municipal solid waste (OFMSW) is a rich source for the AD process because of its high degradability. In this study, electrohydrolysis pretreatment was investigated for the OFMSW to overcome the rate-limiting step of hydrolysis. Electrohydrolysis pretreatment was applied to the OFMSW for 30 and 60 min in a custom-made reactor. In the untreated, 30-min. Treated, and 60-min. Treated OFMSW methane production was observed as 225 ± 2 mL CH4/g VSadded, 231 ± 4 mL CH4/g VSadded, and 248 ± 7 mL CH4/g VSadded, respectively. By increasing the treatment time, the lag phase, during which hydrolysis occurs, was reduced by 40-43%. 3-10% more methane was produced by applying electrohydrolysis pretreatment. These results suggest that electrohydrolysis pretreatment is a promising method to improve the efficiency of AD for the OFMSW by reducing the time required for hydrolysis and increasing methane production. More investigation is required to better comprehend the effects of electrohydrolysis on the OFMSW.
Collapse
Affiliation(s)
- Yagmur Kabakci
- Department of Environmental Engineering, Istanbul Technical University, Istanbul, Ayazaga, 34469, Turkey; Department of Climate Change and Sustainability, TUBITAK Marmara Research Center, Kocaeli, Gebze, 41400, Turkey.
| | - Sadiye Kosar
- Department of Environmental Engineering, Istanbul Technical University, Istanbul, Ayazaga, 34469, Turkey; Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000, Aarhus C, Denmark
| | - Ozgur Dogan
- Department of Climate Change and Sustainability, TUBITAK Marmara Research Center, Kocaeli, Gebze, 41400, Turkey
| | - Fehmi Gorkem Uctug
- Department of Mechanical Engineering, Izmir University of Economy, Izmir, Balcova, 35330, Turkey
| | - Osman Atilla Arikan
- Department of Environmental Engineering, Istanbul Technical University, Istanbul, Ayazaga, 34469, Turkey
| |
Collapse
|