1
|
Xia J, Wang T, Guo J, Jia D, Wu D. Efficient Extraction of Phenols from Coal Tar and Preparation of Phenolic Resin-Based Porous Carbon for Advanced Supercapacitor Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409655. [PMID: 39797478 DOI: 10.1002/smll.202409655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/29/2024] [Indexed: 01/13/2025]
Abstract
Developing simple and efficient extraction methods for phenolic substances from coal tar, which facilitate their direct transformation into high-performance electrode materials, holds considerable practical significance. In this study, amide-zinc chloride deep eutectic solvents are employed for efficient phenol extraction. The optimal phenol extraction process is subsequently investigated, and it is found that the robust hydrogen bonding interactions between solvents and phenols significantly enhance extraction efficiency. Notably, without the need for back-extraction, formaldehyde and tetraethyl orthosilicate are added to obtain phenolic resin, which can subsequently be directly carbonized to fabricate hydrangea-like porous carbon. The carbonization mechanism of the phenolic resin is studied, and the templating and activating roles of tetraethyl orthosilicate and zinc chloride assist in the formation of this unique structure. Furthermore, the flexible supercapacitor assembled using the prepared porous carbon and gel electrolyte achieves a high energy density of 31.0 Wh kg-1 and demonstrates broad temperature applicability ranging from -25 to 100 °C. This work directly converts the extracted phenolic compounds into phenolic resin and shows potential for fabricating porous carbon materials with diverse structures and enhanced capacitive performance.
Collapse
Affiliation(s)
- Jianchao Xia
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Tao Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
- School of Materials Science and Engineering, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Jia Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Dianzeng Jia
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Dongling Wu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| |
Collapse
|
2
|
Wu C, Liu J, Wang Y, Zhao Y, Li G, Zhang Y, Zhang G. A clean method for controlling pore structure development in potassium activation systems to improve CO 2 adsorption properties of biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176429. [PMID: 39326756 DOI: 10.1016/j.scitotenv.2024.176429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
The conventional activator KOH poses issues of pollution and equipment corrosion in activated carbon production. This study proposes a low-cost, one-step synthetic method for the cleaner production of biomass-derived carbon. CO2 adsorbents with high specific surface area (550-1725 m2/g) and superior adsorption performance were prepared using a KCl-assisted activation process with three activators (KOH, KHCO3, K2CO3). The results demonstrated that KCl promoted the formation of a molten salt system in all the different activation processes, which improved the activation efficiency through the formation of a liquid-phase environment. The results show that KCl possesses both pore-creating and pore-modulating properties. We investigated the performance of the two properties and analyzed the influencing factors. Specifically, KCl increases the specific surface area and porosity of the material and also selectively increases the ultramicroporous content. The development and regulation of pore structure can be achieved through the selection of activator, temperature, and dosage of KCl. With the addition of KCl, the performance of the adsorbents in all systems improved due to optimized pore structure. Among them, the sample PB700-4 from KCl-assisted KHCO3 activation exhibited the highest CO2 adsorption of 4.51 mmol/g at 25 °C and 1 bar. The best sample, PC700-3, from the KCl-assisted K2CO3 activation system had an adsorption capacity of 4.48 mmol/g, which was superior to the best sample, PH800-3 (4.28 mmol/g), obtained from KCl-assisted KOH activation. Given the low corrosiveness and toxicity of KHCO3, K2CO3, and KCl, this study introduces a novel approach for cleaner production of activated carbons and advancements in gas separation technology.
Collapse
Affiliation(s)
- Chenlei Wu
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, PR China; Key Laboratory of Coal Science and Technology, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China
| | - Jun Liu
- College of Chemistry, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China; National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Ying Wang
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, PR China; Key Laboratory of Coal Science and Technology, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China
| | - Yuqiong Zhao
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, PR China; Key Laboratory of Coal Science and Technology, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China
| | - Guoqiang Li
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, PR China; Key Laboratory of Coal Science and Technology, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China
| | - Yongfa Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, PR China; Key Laboratory of Coal Science and Technology, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China.
| | - Guojie Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, PR China; Key Laboratory of Coal Science and Technology, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China.
| |
Collapse
|
3
|
Rex P, Meenakshisundaram N, Barmavatu P. Sustainable valorisation of kitchen waste through greenhouse solar drying and microwave pyrolysis- technology readiness level for the production of biochar. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:381-395. [PMID: 39464812 PMCID: PMC11499482 DOI: 10.1007/s40201-024-00909-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 06/08/2024] [Indexed: 10/29/2024]
Abstract
This study proposes an integrated and sustainable approach for the effective conversion of kitchen waste into valuable products through a two-step process. The primary step involves the implementation of greenhouse solar drying to reduce the moisture content of kitchen waste. The secondary step implies microwave pyrolysis for effective degradation of kitchen waste to biooil, biogas and biochar. Biooil and biogas can be used as renewable fuel source. Biochar can be used as soil amendment. Selection of atmospheric conditions for biochar preparation is discussed, highlighting its crucial role in biochar characteristics. This article highlights, technology readiness level of biochar production from kitchen waste to assess the economic viability for the scalability of the process. In this entirety, the conversion of kitchen waste to valuable products through microwave pyrolysis has significant potential to address the challenges posed by high moisture content and heterogenous nature. With continued research and innovation, it is possible to develop a wide array of value-added products from kitchen waste, ultimately leading to a more eco-friendly and economic approach to waste management. Graphical Abstract
Collapse
Affiliation(s)
- Prathiba Rex
- Institute of Agricultural Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602 105 India
| | - Nagaraj Meenakshisundaram
- Institute of Agricultural Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602 105 India
| | - Praveen Barmavatu
- Department of Mechanical Engineering, Faculty of Engineering, Universidad Tecnológica Metropolitana, Av. José Pedro Alessandri 1242, Santiago, Chile
| |
Collapse
|
4
|
Xiaorui L, Haiping Y, Yuanjun T, Chao Y, Hui J, Peixuan X. Deep learning prediction and experimental investigation of specific capacitance of nitrogen-doped porous biochar. BIORESOURCE TECHNOLOGY 2024; 403:130865. [PMID: 38801954 DOI: 10.1016/j.biortech.2024.130865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
N-doped porous biochar is a promising carbon material for supercapacitor electrodes due to its developed pore structure and high chemical activity which greatly affect the capacitive performance. Predicting the capacitance and exploring the most influential factors are of great significance because it can not only avoid the trial-and-error experiments but also provide guidance for the synthesis of biochar with the aim of capacitance enhancement. In this study, a CNN model with ReLU activation function was established using DenseNet architecture for specific capacitance prediction. The importance and impacts of the physiochemical properties of N-doped porous biochar to the capacitance were revealed. With the guidance of the model, N-doped porous biochar samples with high capacitance were synthesized, the data of which were further used for model validation. This study provides not only a deep learning model which can be used in practice for capacitance prediction but also directions for the synthesis of N-doped porous biochar with high capacitive performance.
Collapse
Affiliation(s)
- Liu Xiaorui
- School of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yang Haiping
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, China.
| | - Tang Yuanjun
- School of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Ye Chao
- School of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Jin Hui
- School of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Xue Peixuan
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Dong X, Chu Y, Tong Z, Sun M, Meng D, Yi X, Gao T, Wang M, Duan J. Mechanisms of adsorption and functionalization of biochar for pesticides: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116019. [PMID: 38295734 DOI: 10.1016/j.ecoenv.2024.116019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Agricultural production relies heavily on pesticides. However, factors like inefficient application, pesticide resistance, and environmental conditions reduce their effective utilization in agriculture. Subsequently, pesticides transfer into the soil, adversely affecting its physicochemical properties, microbial populations, and enzyme activities. Different pesticides interacting can lead to combined toxicity, posing risks to non-target organisms, biodiversity, and organism-environment interactions. Pesticide exposure may cause both acute and chronic effects on human health. Biochar, with its high specific surface area and porosity, offers numerous adsorption sites. Its stability, eco-friendliness, and superior adsorption capabilities render it an excellent choice. As a versatile material, biochar finds use in agriculture, environmental management, industry, energy, and medicine. Added to soil, biochar helps absorb or degrade pesticides in contaminated areas, enhancing soil microbial activity. Current research primarily focuses on biochar produced via direct pyrolysis for pesticide adsorption. Studies on functionalized biochar for this purpose are relatively scarce. This review examines biochar's pesticide absorption properties, its characteristics, formation mechanisms, environmental impact, and delves into adsorption mechanisms, functionalization methods, and their prospects and limitations.
Collapse
Affiliation(s)
- Xu Dong
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Yue Chu
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Zhou Tong
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Mingna Sun
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Dandan Meng
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Xiaotong Yi
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Tongchun Gao
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jinsheng Duan
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Key Laboratory of Agro-Product Safety Risk Evaluation (Hefei), Ministry of Agriculture, Hefei 230031, China.
| |
Collapse
|
6
|
Peng L, Wu D, Wang T, Guo J, Jia D. Cottonseed meal derived porous carbon prepared via the protease pretreatment and reduced activator dosage carbonization for supercapacitor. J Chem Phys 2023; 159:214702. [PMID: 38038207 DOI: 10.1063/5.0177247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
The high catalytic activity and specificity of enzymes can be used to pretreat biomass. Herein, the resourceful, reproducible, cheap, and crude protein-rich cottonseed meal (CM) is selected as a precursor and the protease in the K2CO3-KHCO3 buffer solution is used as the enzyme degradation substance to pretreat CM. The crude protein content is significantly reduced by the protease degradation, and, meanwhile, it results in a looser and porous structure of CM. What is more, it significantly reduces the amount of activator. In the subsequent carbonization process, the K2CO3-KHCO3 in the buffer solution is also used as an activating agent (the mass ratio of CM to activator is 2:1), and after carbonization, the O, S, and N doped porous carbon is obtained. The optimized PCM-800-4 exhibits high heteroatom contents and a hierarchical porous structure. The specific capacitance of the prepared porous carbon reaches up to 233 F g-1 in 6M KOH even when 10 mg of active material is loaded. In addition, a K2CO3-KHCO3/EG based gel electrolyte is prepared and the fabricated flexible capacitor exhibits an energy density of 15.6 Wh kg-1 and a wide temperature range (-25 to 100 °C). This study presents a simple enzymatic degradation and reduced activator dosage strategy to prepare a cottonseed meal derived carbon material and looks forward to preparing porous carbon using other biomass.
Collapse
Affiliation(s)
- Lina Peng
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, People's Republic of China
| | - Dongling Wu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, People's Republic of China
| | - Tao Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, People's Republic of China
- The Analysis and Testing Center of Xinjiang University, Urumqi 830017, Xinjiang, People's Republic of China
| | - Jia Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, People's Republic of China
| | - Dianzeng Jia
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, People's Republic of China
| |
Collapse
|
7
|
Yang C, Wu H, Cai M, Zhou Y, Guo C, Han Y, Zhang L. Valorization of Biomass-Derived Polymers to Functional Biochar Materials for Supercapacitor Applications via Pyrolysis: Advances and Perspectives. Polymers (Basel) 2023; 15:2741. [PMID: 37376387 DOI: 10.3390/polym15122741] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Polymers from biomass waste including plant/forest waste, biological industrial process waste, municipal solid waste, algae, and livestock are potential sources for renewable and sustainable resources. Converting biomass-derived polymers to functional biochar materials via pyrolysis is a mature and promising approach as these products can be widely utilized in many areas such as carbon sequestration, power production, environmental remediation, and energy storage. With abundant sources, low cost, and special features, the biochar derived from biological polymeric substances exhibits great potential to be an alternative electrode material of high-performance supercapacitors. To extend this scope of application, synthesis of high-quality biochar will be a key issue. This work systematically reviews the char formation mechanisms and technologies from polymeric substances in biomass waste and introduces energy storage mechanisms of supercapacitors to provide overall insight into the biological polymer-based char material for electrochemical energy storage. Aiming to enhance the capacitance of biochar-derived supercapacitor, recent progress in biochar modification approaches including surface activation, doping, and recombination is also summarized. This review can provide guidance for valorizing biomass waste to functional biochar materials for supercapacitor to meet future needs.
Collapse
Affiliation(s)
- Caiyun Yang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Hao Wu
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Mengyu Cai
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yuting Zhou
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Chunyu Guo
- Jintong Internet of Things (Suzhou) Co., Ltd., Suzhou 215000, China
| | - Ying Han
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Lu Zhang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|