1
|
Yu L, Lin Y, Li J, Deng C, Zhang R, Liu A, Wang L, Li Y, Wei X, Lu D, Gao W, Zheng Y. Suspect Screening of Pharmaceuticals and Their Transformation Products (TPs) in Wastewater during COVID-19 Infection Peak: Identification of New TPs and Elevated Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4893-4905. [PMID: 40042095 DOI: 10.1021/acs.est.5c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Pharmaceuticals and their transformation products (TPs) in wastewater are emerging contaminants that pose risks to ecosystems and human health. Here, a typical period marked by the easing of the "zero-COVID" policy in December 2022, resulting in unprecedented infections in China, was chosen to illustrate the environmental impact of pharmaceutical usage during the COVID-19 pandemic. A suspect screening workflow was developed to identify pharmaceuticals and transformation products (TPs) in wastewater influent and effluent from a wastewater treatment plant (WWTP) during the peak and postpeak periods of COVID-19, integrating medication recommendations and TPs' prediction. A total of 114 pharmaceuticals and TPs were identified (13 TPs were detected for the first time in WWTP) by using liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS). Wastewater-based epidemiology analysis showed that the most predominant pharmaceuticals were nonsteroidal anti-inflammatory drugs. Interestingly, the consumption of propafenone increased after the infection peak, possibly linked to long COVID-19 symptoms. Risks were further evaluated based on concentration, detection frequency, and PMT (persistence, mobility, and toxicity) properties, revealing that TPs of aminopyrine, acetaminophen, etc. showed even greater ToxPi scores than their parent compounds. This study highlights the elevated risks posed by pharmaceutical discharge during epidemics and the necessity for TPs' monitoring.
Collapse
Affiliation(s)
- Lihua Yu
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yongfeng Lin
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jingjing Li
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Chunyan Deng
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Rui Zhang
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Aifeng Liu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Ling Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yiling Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xiaoran Wei
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Dawei Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wei Gao
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|
2
|
Drdanová AP, Tulipánová A, Imreová Z, Krivoňáková N, Staňová AV, Grabic R, Fehér M, Svitková V, Nemčeková K, Šípoš R, Ryba J, Mackuľak T. Comprehensive analysis of pharmaceutical and illicit drugs contamination in thermal swimming pools: Occurrence, distribution, and potential impact. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125775. [PMID: 39889944 DOI: 10.1016/j.envpol.2025.125775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
The contamination of aquatic environments by micropollutants, including pharmaceuticals and illicit drugs, is a growing global issue with significant implications for environmental and public health. This study addresses a critical knowledge gap by examining pharmaceutical and drug contamination in thermal swimming pools, which are often legally discharged into water bodies without treatment. A total of 49 water samples from 19 distinct thermal pools were analysed, targeting 101 compounds, including pharmaceuticals, illicit drugs, and their metabolites. High-frequency contaminants were identified including caffeine, theophylline, cardiovascular medications (bisoprolol, metoprolol, telmisartan), antidepressants (venlafaxine, citalopram), antihistamines (cetirizine, diphenhydramine), the analgesic tramadol, the antiepileptic carbamazepine, and the illicit drug methamphetamine. The study revealed that these substances were present in more than 30% of the samples, with some occurring at relatively high maximum concentrations, e.g. caffeine (69 μg/L), and methamphetamine (1.8 μg/L). Notably, certain categories of targeted micropollutants, such as cardiovascular medications and illicit drugs, were found to be more prevalent in specific pools. A higher occurrence of cardiovascular drugs has been observed in a pool predominantly designed for relaxation and thus probably preferred by older people. In this pool also notably high levels of illicit drugs were found. The presence of illegal drugs was also confirmed in the children's pool. This study contributes valuable insights into the patterns of micropollutant distribution in thermal pools and emphasises the necessity for enhanced monitoring and management strategies to mitigate environmental and public health risks posed by micropollutants, as well as the possible further impact on aquatic ecosystems.
Collapse
Affiliation(s)
- Alexandra Paulína Drdanová
- Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia.
| | - Alexandra Tulipánová
- Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Zuzana Imreová
- Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia; MicroPoll s.r.o., Vazovova 5, 812 43, Bratislava, Slovakia
| | - Naďa Krivoňáková
- Institute of Information Engineering, Automation and Mathematics, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Andrea Vojs Staňová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic; Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15, Bratislava, Slovakia
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Miroslav Fehér
- Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Veronika Svitková
- MicroPoll s.r.o., Vazovova 5, 812 43, Bratislava, Slovakia; Institute of Inorganic Chemistry, Technology and Materials, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Katarína Nemčeková
- Institute of Inorganic Chemistry, Technology and Materials, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Rastislav Šípoš
- Institute of Inorganic Chemistry, Technology and Materials, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Jozef Ryba
- MicroPoll s.r.o., Vazovova 5, 812 43, Bratislava, Slovakia; Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia
| | - Tomáš Mackuľak
- Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovakia; MicroPoll s.r.o., Vazovova 5, 812 43, Bratislava, Slovakia
| |
Collapse
|
3
|
Anagnostopoulou K, Evgenidou E, Alampanos V, Lambropoulou DA. High-resolution mass spectrometry approaches for screening persistent and Mobile organic compounds in wastewaters: Target analysis, suspect analysis and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178777. [PMID: 39961155 DOI: 10.1016/j.scitotenv.2025.178777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025]
Abstract
Water resources face significant threats from pollutants identified as Persistent Mobile Organic Compounds (PMOCs). These substances are known for their affinity for water, resistance to environmental degradation, and potential adverse effects on human health and the environment, particularly when classified as toxic. Accordingly, a three-year monitoring study (2021-2023) was carried out at a WWTP in Northern Greece (Thessaloniki), utilizing High-Resolution Mass Spectrometry (HRMS) technology to detect (potentially) PMOCs. The monitoring process was based on two basic approaches of HRMS analysis: target and suspect screening. A total number of 2500 different potential PMOCs list was created based on the available literature. Fifty-five of them were identified with the target analysis approach in at least one sample. The results indicated that antihypertensives and beta-blockers were among the most frequently detected PMOCs categories during the sampling period. Specifically, valsartan and irbesartan exhibited substantial increases in concentration, surpassing 5000 ng/L in influent samples and 1000 ng/L in effluent samples. Additionally, the study employed suspect analysis, incorporating potential substances from the literature to enhance the monitoring program. As a result, the list of identified compounds was expanded by 16 additional compounds with a confidence level of 2b identification. This was complemented by retrospective analysis techniques to identify compounds that are challenging to obtain as standard compounds. The study culminated in an estimation of the environmental risks. The findings highlight the ecological risks associated with elevated PMOCs levels and emphasize the need for continuous monitoring and regulatory measures to mitigate potential environmental impacts. Finally, the study contributes to understanding the complex interactions between environmental factors, PMOCs consumption, and pollution in wastewater treatment plants.
Collapse
Affiliation(s)
- Kyriaki Anagnostopoulou
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10(th) km Thessaloniki-Thermi Rd, GR 57001, Greece
| | - Eleni Evgenidou
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10(th) km Thessaloniki-Thermi Rd, GR 57001, Greece
| | - Vasileios Alampanos
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10(th) km Thessaloniki-Thermi Rd, GR 57001, Greece
| | - Dimitra A Lambropoulou
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10(th) km Thessaloniki-Thermi Rd, GR 57001, Greece.
| |
Collapse
|
4
|
Zhou X, Li Q, Shi Z, Lu W, Shu C, Zhu J, Wu Y. Assessing the prevalence of human enteric viruses in hospital wastewater to evaluate the effectiveness of wastewater treatment systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117488. [PMID: 39644571 DOI: 10.1016/j.ecoenv.2024.117488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/23/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
In this experiment, we employed Real-time PCR(RT-PCR) and metagenomic Next-Generation Sequencing (mNGS) techniques to detect the presence of Norovirus, Rotavirus Group A, Adenovirus Group F, and Astrovirus in untreated sewage from three major hospitals. A comparison with clinical lab test outcomes revealed Norovirus as having the highest infection rate, followed by Adenovirus Group F and Rotavirus Group A. Despite not testing for Astrovirus in clinical labs, its sewage detection rate was surpassed only by Norovirus, suggesting a potentially high clinical infection rate. Further analysis of these viruses in treated sewage revealed that chlorination failed to eliminate the virus, maintaining viral concentrations in the treated sewage between 10^2 and 10^3 copies/ml. Even though nucleic acid testing methods fail to detect viral actions, the possible danger they present to public safety should not be ignored. During this experiment, viral nucleic acid was extracted directly from the samples without prior concentration. This method, unlike conventional virus detection post-concentration, bypasses concerns such as recovery efficiency, offering a clearer representation of virus concentrations in water samples and facilitating easier operation.
Collapse
Affiliation(s)
- Xuebing Zhou
- Department of Clinical Laboratory, No.906 Hospital of People's Liberation Army, Ningbo, China
| | - Qingcao Li
- Department of Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, China.
| | - Zhanying Shi
- Department of Clinical Laboratory, No.906 Hospital of People's Liberation Army, Ningbo, China
| | - Wenbo Lu
- Department of Clinical Laboratory, Ningbo Women and Children's Hospital, Ningbo, China
| | - Chunhui Shu
- Department of Laboratory Medicine, Ningbo Mingzhou Hospital, Ningbo, China
| | - Junyao Zhu
- Department of Clinical Laboratory, No.906 Hospital of People's Liberation Army, Ningbo, China
| | - Yong Wu
- Department of Clinical Laboratory, No.906 Hospital of People's Liberation Army, Ningbo, China
| |
Collapse
|
5
|
Paíga P, Delerue-Matos C. Tracing Pharmaceuticals in Water Systems: Focus on Neurodegenerative and Psychiatric Treatments. J Xenobiot 2024; 14:1807-1825. [PMID: 39584961 PMCID: PMC11586952 DOI: 10.3390/jox14040096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024] Open
Abstract
Pharmaceutical residues in aquatic ecosystems pose significant environmental and public health challenges. Identifying the presence and levels of these pharmaceuticals is crucial. This study developed an analytical method to detect pharmaceuticals used for Alzheimer's (AD) and Parkinson's (PD) disease, including psychiatric drugs and the stimulant caffeine, targeting 30 compounds. Optimized mass spectrometric and liquid chromatographic parameters enabled robust detection and quantification. The methodology was applied to 25 surface and wastewater samples. Twenty-one compounds were detected including eight psychiatric drugs, five metabolites (citalopram N-oxide, citalopram propionic acid, desmethylcitalopram, O-desmethylvenlafaxine, and 10,11-epoxycarbamazepine), and seven AD/PD pharmaceuticals along with caffeine. Nine compounds (apomorphine, benserazide, donepezil, didemethylcitalopram, carbidopa, norfluoxetine, galantamine, pramipexole, and safinamide) were not detected. Fluoxetine was found in all samples, and caffeine had the highest concentration at 76,991 ng/L, reflecting its high consumption. Concentrations ranged from 29.8 to 656 ng/L for caffeine,
Collapse
Affiliation(s)
- Paula Paíga
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| |
Collapse
|
6
|
Jiang T, Wu W, Ma M, Hu Y, Li R. Occurrence and distribution of emerging contaminants in wastewater treatment plants: A globally review over the past two decades. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175664. [PMID: 39173760 DOI: 10.1016/j.scitotenv.2024.175664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/20/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Emerging contaminants are pervasive in aquatic environments globally, encompassing pharmaceuticals, personal care products, steroid hormones, phenols, biocides, disinfectants and various other compounds. Concentrations of these contaminants are detected ranging from ng/L to μg/L. Even at trace levels, these contaminants can pose significant risks to ecosystems and human health. This article systematically summarises and categorizes data on the concentrations of 54 common emerging contaminants found in the influent and effluent of wastewater treatment plants across various geographical regions: North America, Europe, Oceania, Africa, and Asia. It reviews the occurrence and distribution of these contaminants, providing spatial and causal analyses based on data from these regions. Notably, the maximum concentrations of the pollutants observed vary significantly across different regions. The data from Africa, in particular, show more frequent detection of pharmaceutical maxima in wastewater treatment plants.
Collapse
Affiliation(s)
- Tingting Jiang
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China; College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Wenyong Wu
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China; College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, China.
| | - Meng Ma
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| | - Yaqi Hu
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| | - Ruoxi Li
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| |
Collapse
|
7
|
Jeon DR, Kim YE, Im JK, Huh Y, Kim HS. Non-Targeted Screening and Identification of the Transformation Pathway of Carbamazepine in the Saemangeum Watershed, Republic of Korea. Int J Mol Sci 2024; 25:11947. [PMID: 39596017 PMCID: PMC11593937 DOI: 10.3390/ijms252211947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Carbamazepine (CBZ) is a widely used pharmaceutical for various purposes, including as an anticonvulsant, antibiotic, and antiepileptic agent, and it undergoes diverse metabolic pathways in both the environment and the human body. Therefore, this study aimed to explore the distribution of CBZ, the presence of its transformation products (TPs), and the transformation pathways in the Mangyeong and Dongjin Rivers in the Saemangeum watershed of Korea using non-targeted screening. The concentration distribution results for CBZ and its TPs showed that the average concentrations in the Mangyeong and Dongjin Rivers were 128.8 ng/L and 89.0 ng/L, respectively. The Mangyeong River exhibited a higher CBZ concentration than the Dongjin River, which was similar to those of the reported CBZ concentrations in other major domestic and international rivers. The types and detection frequencies of the identified TPs exhibited similar trends. The detection frequencies of the TPs decreased in the following order: CBZ-EP > DiOH-CBZ > 10OH-CBZ > 2OH-CBZ > 9-carboxyacridine > 9-acridinecarboxaldehyde. The detection frequency of the main TPs was high, and some were believed to be generated during the water treatment process. The presence of additional TPs (CBZ-O-quinone, acridine, and iminostilbene) was confirmed by the generated molecular networks. This study presents the transformation pathway of the CBZ and provides foundational data for understanding the environmental behavior of TPs, improving wastewater treatment plants, managing water quality, and establishing water environmental policies.
Collapse
Affiliation(s)
| | | | | | | | - Hyoung Seop Kim
- Environmental Measurement & Analysis Center, National Institute of Environmental Research, 42 Hwangyong-ro, Incheon 22689, Republic of Korea; (D.R.J.); (Y.-E.K.); (J.K.I.); (Y.H.)
| |
Collapse
|
8
|
Beltrán de Heredia I, González-Gaya B, Zuloaga O, Garrido I, Acosta T, Etxebarria N, Ruiz-Romera E. Occurrence of emerging contaminants in three river basins impacted by wastewater treatment plant effluents: Spatio-seasonal patterns and environmental risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174062. [PMID: 38917906 DOI: 10.1016/j.scitotenv.2024.174062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/14/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
The concern on the fate and distribution of contaminants of emerging concern (CECs) is a burning topic due to their widespread occurrence and potential harmful effects. Particularly, antibiotics have received great attention due to their implications in antimicrobial resistance occurrence. The impact of wastewater treatment plants (WWTP) is remarkable, being one of the main pathways for the introduction of CECs into aquatic systems. The combination of novel analytical methodologies and risk assessment strategies is a promising tool to find out environmentally relevant compounds posing major concerns in freshwater ecosystems impacted by those wastewater effluents. Within this context, a multi-target approach was applied in three Spanish river basins affected by different WWTP treated effluents for spatio-temporal monitoring of their chemical status. Solid phase extraction followed by ultra-high-performance liquid chromatography were used for the quantification of a large panel of compounds (n = 270), including pharmaceuticals and other consumer products, pesticides and industrial chemicals. To this end, water samples were collected in four sampling campaigns at three locations in each basin: (i) upstream from the WWTPs; (ii) WWTP effluent discharge points (effluent outfall); and (iii) downstream from the WWTPs (500 m downriver from the effluent outfall). Likewise, 24-h composite effluent samples from each of the WWTPs were provided in all sampling periods. First the occurrence and distribution of these compounds were assessed. Diverse seasonal trends were observed depending on the group of emerging compounds, though COVID-19 outbreak affected variations of certain pharmaceuticals. Detection frequencies and concentrations in effluents generally exceeded those in river samples and concentrations measured upstream WWTPs were generally low or non-quantifiable. Finally, risks associated with maximum contamination levels were evaluated using two different approaches to account for antibiotic resistance selection as well. From all studied compounds, 89 evidenced environmental risk on at least one occasion in this study.
Collapse
Affiliation(s)
- Irene Beltrán de Heredia
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain.
| | - Belén González-Gaya
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Campus of Leioa, 48940 Leioa, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza Pasealekua 47, 48620 Plentzia, Basque Country, Spain
| | - Olatz Zuloaga
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Campus of Leioa, 48940 Leioa, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza Pasealekua 47, 48620 Plentzia, Basque Country, Spain
| | - Itziar Garrido
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain; Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Campus of Leioa, 48940 Leioa, Spain
| | - Teresa Acosta
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain; Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Campus of Leioa, 48940 Leioa, Spain
| | - Nestor Etxebarria
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Campus of Leioa, 48940 Leioa, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza Pasealekua 47, 48620 Plentzia, Basque Country, Spain
| | - Estilita Ruiz-Romera
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain
| |
Collapse
|
9
|
Petromelidou S, Anagnostopoulou K, Koronaiou LA, Kalaronis D, Ainali NM, Evgenidou E, Papageorgiou M, Christodoulou A, Lioumbas I, Kyzas GZ, Mitropoulos A, Bikiaris DN, Lambropoulou DA. Exploring patterns of antibiotics during and after COVID-19 pandemic in wastewaters of northern Greece: Potential adverse effects on aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169832. [PMID: 38190919 DOI: 10.1016/j.scitotenv.2023.169832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/10/2024]
Abstract
Antibiotics, recognized as Emerging Contaminants (ECs), have raised concerns due to their pervasive presence in wastewater treatment plants (WWTPs) and subsequent release into aquatic environments, posing potential ecological risks and contributing to the development of antibiotic-resistant genes. The COVID-19 pandemic prompted an unprecedented surge in antibiotic consumption, necessitating a comprehensive assessment of its impact on antibiotic levels in wastewater. In this light, a four-year monitoring study (2020-2023) was conducted in a WWTP located in the Northern Greece (Thessaloniki), employing High-Resolution Mass Spectrometry (HRMS) technology to monitor twenty antibiotics, during distinct phases pre-, during, and post-COVID-19. Our findings revealed that macrolides and fluoroquinolones were among the most often detected categories during the sampling period. Among the compounds detected, azithromycin and clarithromycin showed the most significant increases during the pandemic, doubling their average concentrations. This establishes a clear correlation between the rise in their concentrations and the incidence of COVID-19 cases. A general downward trend after 2021 was attributed to the new restrictions posed in Greece during this year, regarding the liberal prescription of antibiotics. Seasonal variation revealed a minute augmentation of antibiotics' use during the months that infections are increased. Additionally, the study highlights the ecological risks associated with elevated antibiotic presence and emphasizes the need for continued monitoring and regulatory measures to mitigate potential ecological repercussions. These findings contribute to our understanding of the complex interplay between antibiotic consumption, environmental presence, and the COVID-19 pandemic's impact on antibiotic pollution in WWTPs.
Collapse
Affiliation(s)
- Styliani Petromelidou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, GR 57001, Greece
| | - Kyriaki Anagnostopoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, GR 57001, Greece
| | - Lelouda-Athanasia Koronaiou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, GR 57001, Greece
| | - Dimitrios Kalaronis
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Nina Maria Ainali
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, GR-541 24, Greece
| | - Eleni Evgenidou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, GR 57001, Greece
| | - Matthildi Papageorgiou
- EYATH S.A., Thessaloniki Water Supply & Sewerage Company, Egnatias 127, GR 54635, Thessaloniki, Greece
| | - Aikaterini Christodoulou
- EYATH S.A., Thessaloniki Water Supply & Sewerage Company, Egnatias 127, GR 54635, Thessaloniki, Greece
| | - Ioannis Lioumbas
- EYATH S.A., Thessaloniki Water Supply & Sewerage Company, Egnatias 127, GR 54635, Thessaloniki, Greece
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, Kavala GR-654 04, Greece
| | | | - Dimitrios N Bikiaris
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, GR-541 24, Greece
| | - Dimitra A Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, GR 57001, Greece.
| |
Collapse
|
10
|
Lopez-Herguedas N, Irazola M, Alvarez-Mora I, Mijangos L, Bilbao D, Etxebarria N, Zuloaga O, Olivares M, Prieto A. Evaluating membrane bioreactor treatment for the elimination of emerging contaminants using different analytical methods. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132833. [PMID: 37918067 DOI: 10.1016/j.jhazmat.2023.132833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Since wastewater treatment plants (WWTPs) were not originally designed to eliminate contaminants of emerging concern (CECs), alternative strategies like membrane bioreactor (MBR) technology are gaining importance in achieving effective CEC removal and minimising their environmental impact. In this study, composite wastewater samples were collected from the biggest WWTP in the Basque Country (Galindo, Biscay) and the performance of two secondary treatments (i.e. conventional activated sludge treatment, CAS, and MBR) was assessed. The combination of a suspect screening approach using liquid chromatography tandem high-resolution mass spectrometry (LC-HRMS) and multitarget analysis by gas chromatography-mass spectrometry (GC-MS) allowed the detection of approximately 200 compounds in the WWTP effluents. The estimated removal efficiencies (REs) revealed that only 16 micropollutants exhibited enhanced removal by MBR treatment (RE > 70% or 40 - 60%). The environmental risk posed by the non-eliminated compounds after both treatments remained similar, being anthracene, clarithromycin, bis(2-ethylhexyl) phthalate (DEHP) and dilantin the most concerning pollutants (RQ > 1). The Microtox® bioassay confirmed the MBR's efficiency in removing baseline toxicity, while suggesting a similar performance of CAS treatment. These minimal differences between treatments call into question the worthiness of MBR treatment and emphasise the need to seek more efficient alternative treatment methods.
Collapse
Affiliation(s)
- N Lopez-Herguedas
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain.
| | - M Irazola
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - I Alvarez-Mora
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - L Mijangos
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - D Bilbao
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - N Etxebarria
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - O Zuloaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - M Olivares
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - A Prieto
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| |
Collapse
|
11
|
Wu G, Zhu F, Zhang X, Ren H, Wang Y, Geng J, Liu H. PBT assessment of chemicals detected in effluent of wastewater treatment plants by suspected screening analysis. ENVIRONMENTAL RESEARCH 2023; 237:116892. [PMID: 37598848 DOI: 10.1016/j.envres.2023.116892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023]
Abstract
Wastewater treatment plants (WWTPs) are the major sources of contaminants discharged into downstream water bodies. Profiling the contaminants in effluent of WWTPs is crucial to assess the potential eco-risks toward downstream organisms. To this end, this study investigated the contaminants in effluent of 10 WWTPs locating in 10 cities of Yangtze River delta region of China by suspected screening analysis. Further, the persistence, bioaccumulation, toxicity (PBT) and the characteristics sub-structures of PBT-like chemicals were analyzed. Totally, 704 chemicals including 155 chemical products, 31 food additives, 52 natural substances, 112 personal care products, 123 pesticides, 192 pharmaceuticals, 17 hormones and 22 others were found. The results of PBT analysis suggested that 42 chemicals (5.97% among the detected chemicals in WWTPs) were with PBT property. Among them, 31 contaminants were not reported previously. 9 characteristics sub-structures (N-methyleneisobutylamine, 1-naphthaldehyde, 2,3,3-trimethylcyclohexene, cyclohexanol, N-sec-butyl-n-propylamine, (5E)-2,6-dimethylocta-1,5-diene, 2-ethylphenol, pentadecane and 6-methoxyhexane) were found for PBT-like chemicals. The sub-structures of highly linear alkyl partially explained the significantly higher PBT score for personal care products. Present study provides fundamental information on PBT properties of contaminants in effluent of WWTPs, which will benefit to prioritize contaminants with high concerns in effluent of WWTPs.
Collapse
Affiliation(s)
- Gang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Feng Zhu
- Jiangsu Province Center for Disease Control and Prevention, Nanjing, Jiangsu, 210009, PR China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Yanru Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400044, PR China.
| | - Hualiang Liu
- Jiangsu Province Center for Disease Control and Prevention, Nanjing, Jiangsu, 210009, PR China.
| |
Collapse
|