1
|
Bazarkina EF, Lau KV, Chappaz A, Bastrakov E, Etschmann B, Brugger J, Marshall M, Meyer FM, Boreham CJ, Amidani L, Kvashnina KO. Advanced 2D XRF imaging of uranium oxidation states using HERFD at the U M 4 edge. Chem Commun (Camb) 2025; 61:3840-3843. [PMID: 39935395 PMCID: PMC11816045 DOI: 10.1039/d4cc06211f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
Uranium is found in various types of rocks. HERFD-XRF imaging at the U M4 edge is a novel non-destructive technique that visualizes the distribution of U(IV), (V), and (VI) oxidation states at concentration levels ranging from ppm to wt%, offering unprecedented insights into uranium habitat and valence.
Collapse
Affiliation(s)
- Elena F Bazarkina
- Institute of Resource Ecology, Helmholtz Zentrum Dresden-Rossendorf (HZDR), PO Box 510119, 01314 Dresden, Germany.
- The Rossendorf Beamline at ESRF, The European Synchrotron, CS40220, 38043 Grenoble Cedex 9, France
| | - Kimberly V Lau
- Dept of Geosciences and the Earth and Environmental Systems Institute, Penn State University, University Park, PA 16802, USA
| | - Anthony Chappaz
- STARLAB, Department of Earth and Atmospheric Sciences, Central Michigan University, 17 MI 48859, USA
| | - Evgeny Bastrakov
- Geoscience Australia, GPO Box 378, Canberra, ACT 2601, Australia
| | - Barbara Etschmann
- School of Earth Atmosphere and Environment, Monash University, Clayton, VIC 3800, Australia
| | - Joël Brugger
- School of Earth Atmosphere and Environment, Monash University, Clayton, VIC 3800, Australia
| | - Madeline Marshall
- Department of Earth and Environment, Albion College, Albion, MI 49224, USA
| | - Frances M Meyer
- Dept of Geosciences and the Earth and Environmental Systems Institute, Penn State University, University Park, PA 16802, USA
| | | | - Lucia Amidani
- Institute of Resource Ecology, Helmholtz Zentrum Dresden-Rossendorf (HZDR), PO Box 510119, 01314 Dresden, Germany.
- The Rossendorf Beamline at ESRF, The European Synchrotron, CS40220, 38043 Grenoble Cedex 9, France
| | - Kristina O Kvashnina
- Institute of Resource Ecology, Helmholtz Zentrum Dresden-Rossendorf (HZDR), PO Box 510119, 01314 Dresden, Germany.
- The Rossendorf Beamline at ESRF, The European Synchrotron, CS40220, 38043 Grenoble Cedex 9, France
| |
Collapse
|
2
|
Hilpmann S, Jeschke I, Hübner R, Deev D, Zugan M, Rijavec T, Lapanje A, Schymura S, Cherkouk A. Uranium (VI) reduction by an iron-reducing Desulfitobacterium species as single cells and in artificial multispecies bio-aggregates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177210. [PMID: 39471942 DOI: 10.1016/j.scitotenv.2024.177210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
Microbial U(VI) reduction plays a major role in new bioremediation strategies for radionuclide-contaminated environments and can potentially affect the safe disposal of high-level radioactive waste in a deep geological repository. Desulfitobacterium sp. G1-2, isolated from a bentonite sample, was used to investigate its potential to reduce U(VI) in different background electrolytes: bicarbonate buffer, where a uranyl(VI)‑carbonate complex predominates, and synthetic Opalinus Clay pore water, where a uranyl(VI)-lactate complex occurs, as confirmed by time-resolved laser-induced fluorescence spectroscopic measurements. While Desulfitobacterium sp. G1-2 rapidly removed almost all U from the supernatants in bicarbonate buffer, only a low amount of U was removed in Opalinus Clay pore water. UV/Vis measurements suggest a speciation-dependent reduction by the microorganism. Scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy revealed the formation of two different U-containing nanoparticles inside the cells. In a subsequent step, artificial multispecies bio-aggregates were formed using derivatized polyelectrolytes with cells of Desulfitobacterium sp. G1-2 and Cobetia marina DSM 50416 to assess their potential for U(VI) reduction under aerobic and anaerobic conditions. These findings provide new perspectives on microbial U(VI) reduction and contribute to the development of a safety concept for high-level radioactive waste repositories, as well as to new bioremediation strategies.
Collapse
Affiliation(s)
- Stephan Hilpmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Dresden, Germany
| | - Isabelle Jeschke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Dresden, Germany
| | - René Hübner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Dresden, Germany
| | - Dmitrii Deev
- Jožef Stefan Institute, Department of Environmental Sciences, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Maja Zugan
- Jožef Stefan Institute, Department of Environmental Sciences, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Tomaž Rijavec
- Jožef Stefan Institute, Department of Environmental Sciences, Ljubljana, Slovenia
| | - Aleš Lapanje
- Jožef Stefan Institute, Department of Environmental Sciences, Ljubljana, Slovenia
| | - Stefan Schymura
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Research Site Leipzig, Leipzig, Germany
| | - Andrea Cherkouk
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Dresden, Germany.
| |
Collapse
|
3
|
Lian G, An Y, Sun J, Yang B, Shen Z. Effects and driving mechanisms of bioremediation on groundwater after the neutral in situ leaching of uranium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174406. [PMID: 38964395 DOI: 10.1016/j.scitotenv.2024.174406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/04/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
The remediation of groundwater subject to in situ leaching (ISL) for uranium mining has raised extensive concerns in uranium mill and milling. This study conducted bioremediation through biostimulation and bioaugmentation to the groundwater in an area in northern China that was contaminated due to uranium mining using the CO2 + O2 neutral ISL (NISL) technology. It identified the dominant controlling factors and mechanisms driving bioremediation. Findings indicate that microorganisms can reduce the uranium concentration in groundwater subject to NISL uranium mining to its normal level. After 120 days of bioaugmentation, the uranium concentration in the contaminated groundwater fell to 0.36 mg/L, achieving a remediation efficiency of 91.26 %. Compared with biostimulation, bioaugmentation shortened the remediation timeframe by 30 to 60 days while maintaining roughly the same remediation efficiency. For groundwater remediation using indigenous microbial inoculants, initial uranium concentration and low temperatures (below 15 °C) emerge as the dominant factors influencing the bioremediation performance and duration. In settings with high carbonate concentrations, bioremediation involved the coupling of multiple processes including bioreduction, biotransformation, biomineralization, and biosorption, with bioreduction assuming a predominant role. Post-bioremediation, the relative abundances of reducing microbes Desulfosporosinus and Sulfurospirillum in groundwater increased significantly by 10.56 % and 6.91 %, respectively, offering a sustainable, stable biological foundation for further bioremediation of groundwater.
Collapse
Affiliation(s)
- Guoxi Lian
- State Key Laboratory of Water Environment, School of Environment, Beijing Normal University, Beijing 100875, China; Nuclear and Radiation Safety Center, Ministry of Ecology and Environment, Beijing 100082, China
| | - Yifu An
- The Fourth Research and Design Engineering Corporation of CNNC, Shijiazhuang 050021, China
| | - Juan Sun
- The Fourth Research and Design Engineering Corporation of CNNC, Shijiazhuang 050021, China
| | - Bing Yang
- The Fourth Research and Design Engineering Corporation of CNNC, Shijiazhuang 050021, China
| | - Zhenyao Shen
- State Key Laboratory of Water Environment, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
4
|
Dai Z, Wu H, Chen L, Gao Y, Li L, Ding D. Phytic acid-functionalized polyamidoxime/alginate hydrogel for targeted uranium extraction from acidic wastewater. Carbohydr Polym 2024; 339:122283. [PMID: 38823934 DOI: 10.1016/j.carbpol.2024.122283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 06/03/2024]
Abstract
Efficient removal of uranium from radioactive wastewater is crucial for both environmental protection and sustainable development of nuclear energy. However, selectively extracting uranium from acidic wastewater remains a significant challenge. Here we present a phytic acid-functionalized polyamidoxime/alginate hydrogel (PAG) via a facile one-step hydrothermal reaction. The PAG, leveraging the robust binding affinity of phytic acid and the selective coordination of amidoxime for U(VI), exhibited high efficiency and selectivity in adsorbing U(VI) from acidic uranium-containing wastewater. At pH 2.50, U(VI) adsorption equilibrium was achieved within 60 min, showcasing a maximum theoretical adsorption capacity of 218.34 mg/g. Additionally, the PAG demonstrated excellent reusability, maintaining a uranium removal rate exceeding 90 % over five adsorption-desorption cycles. Remarkably, the as-synthesized PAG removed 94.1 % of U(VI) from actual acidic uranium-contaminated groundwater with excellent anti-interference performance, reducing U(VI) concentration from 272.0 μg/L to 16.1 μg/L and making it meet the WHO drinking water standards (30 μg/L). The adsorption mechanism was elucidated through XPS and DFT calculation, revealing that the uranyl ion primarily coordinated with phosphate and amidoxime groups on phytic acid and polyamidoxime, respectively. These findings underscore the promising potential of PAG hydrogel for addressing acidic uranium-containing wastewater from uranium mining and metallurgy.
Collapse
Affiliation(s)
- Zhongran Dai
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Huinan Wu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Lijie Chen
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Yuan Gao
- School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China
| | - Le Li
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China.
| |
Collapse
|
5
|
An Y, Sun J, Ren L, Gao Y, Wu X, Lian G. Enhanced microbial remediation of uranium tailings through red soil utilization. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2024; 277:107463. [PMID: 38815432 DOI: 10.1016/j.jenvrad.2024.107463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Seepage of uranium tailings has become a focus of attention in the uranium mining and metallurgy industry, and in-situ microbial remediation is considered an effective way to treat uranium pollution. However, this method has the drawbacks of easy biomass loss and unstable remediation effect. To overcome these issues, spare red soil around the uranium mine was used to enhance the efficiency and stability of bioremediation. Furthermore, the bioremediation mechanism was revealed by employing XRD, FTIR, XPS, and 16S rRNA. The results showed that red soil, as a barrier material, had the adsorption potential of 8.21-148.00 mg U/kg soil, but the adsorption is accompanied by the release of certain acidic and oxidative substances. During the dynamic microbial remediation, red soil was used as a cover material to neutralize acidity, provide a higher reduction potential (<-200 mV), and increase the retention rate of microbial agent (19.06 mL/d) compared to the remediation group without red soil. In the presence of red soil, the anaerobic system could maintain the uranium concentration in the solution below 0.3 mg/L for more than 70 days. Moreover, the generation of new clay minerals driven by microorganisms was more conducive to the stability of uranium tailings. Through alcohol and amino acid metabolism of microorganisms, a reducing environment with reduced valence states of multiple elements (such as S2-, Fe2+, and U4+) was formed. At the same time, the relative abundance of functional microbial communities in uranium tailings improved in presence of red soil and Desulfovirobo, Desulfocapsa, Desulfosporosinus, and other active microbial communities reconstructed the anaerobic environment. The study provides a new two-in-one solution for treatment of uranium tailings and resource utilization of red soil through in-situ microbial remediation.
Collapse
Affiliation(s)
- Yifu An
- China Nuclear Mining Science and Technology Corporation, Shijiazhuang, 050021, China
| | - Juan Sun
- China Nuclear Mining Science and Technology Corporation, Shijiazhuang, 050021, China.
| | - Lijiang Ren
- China Nuclear Mining Science and Technology Corporation, Shijiazhuang, 050021, China
| | - Yang Gao
- China Nuclear Mining Science and Technology Corporation, Shijiazhuang, 050021, China
| | - Xuyang Wu
- China Nuclear Mining Science and Technology Corporation, Shijiazhuang, 050021, China
| | - Guoxi Lian
- State Key Laboratory of Water Environment, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
6
|
Yan M, Gao Q, Shao D. Elimination of uranium pollution from coastal nuclear power plant by marine microorganisms: Capability and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169959. [PMID: 38190894 DOI: 10.1016/j.scitotenv.2024.169959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/10/2024]
Abstract
Uranium is one of the sensitive radionuclides in the wastewater of nuclear powers. Due to the fact that nuclear powers are mainly located in coastal areas, the elimination of uranium (U(VI)) pollution from coastal nuclear power is ultimately rely on marine microorganisms. The fixing of U(VI) on V. alginolyticus surface or converting it into sediments is an effective elimination strategy for U(VI) pollution. In this work, typical marine microorganism V. alginolyticus was used to evaluate the elimination of U(VI) pollution by marine microorganisms. Effects of solution conditions (such as pH, temperature, and bacterium concentrations) on the physicochemical properties and elimination capabilities of V. alginolyticus were studied in detail. FT-IR, XPS and XRD results reveal that COOH, NH2, OH and PO4 on V. alginolyticus were main functional groups for U(VI) elimination and formed (UO2)3(PO4)2·H2O. The elimination of U(VI) by V. alginolyticus includes two stages of adsorption and biomineralization. The theoretical maximum adsorption capacity (Cs,max) of V. alginolyticus for U(VI) can reach up to 133 mg/g at pH 5 and 298 K, and the process reached equilibrium in 3 h. Results show that V. alginolyticus play important role in the elimination of U(VI) pollution in seawater.
Collapse
Affiliation(s)
- Meng Yan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Qianhong Gao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Dadong Shao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
7
|
Hilpmann S, Moll H, Drobot B, Vogel M, Hübner R, Stumpf T, Cherkouk A. Europium(III) as luminescence probe for interactions of a sulfate-reducing microorganism with potentially toxic metals. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115474. [PMID: 37716067 DOI: 10.1016/j.ecoenv.2023.115474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Microorganisms show a high affinity for trivalent actinides and lanthanides, which play an important role in the safe disposal of high-level radioactive waste as well as in the mining of various rare earth elements. The interaction of the lanthanide Eu(III) with the sulfate-reducing microorganism Desulfosporosinus hippei DSM 8344T, a representative of the genus Desulfosporosinus that naturally occurs in clay rock and bentonite, was investigated. Eu(III) is often used as a non-radioactive analogue for the trivalent actinides Pu(III), Am(III), and Cm(III), which contribute to a major part of the radiotoxicity of the nuclear waste. D. hippei DSM 8344T showed a weak interaction with Eu(III), most likely due to a complexation with lactate in artificial Opalinus Clay pore water. Hence, a low removal of the lanthanide from the supernatant was observed. Scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy revealed a bioprecipitation of Eu(III) with phosphates potentially excreted from the cells. This demonstrates that the ongoing interaction mechanisms are more complex than a simple biosorption process. The bioprecipitation was also verified by luminescence spectroscopy, which showed that the formation of the Eu(III) phosphate compounds starts almost immediately after the addition of the cells. Moreover, chemical microscopy provided information on the local distribution of the different Eu(III) species in the formed cell aggregates. These results provide first insights into the interaction mechanisms of Eu(III) with sulfate-reducing bacteria and contribute to a comprehensive safety concept for a high-level radioactive waste repository, as well as to a better understanding of the fate of heavy metals (especially rare earth elements) in the environment.
Collapse
Affiliation(s)
- Stephan Hilpmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Henry Moll
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Björn Drobot
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Manja Vogel
- VKTA - Strahlenschutz, Analytik & Entsorgung Rossendorf e. V., Dresden, Germany
| | - René Hübner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Dresden, Germany
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Andrea Cherkouk
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| |
Collapse
|