1
|
Zhao G, Tian S, Liang S, Jing Y, Chen R, Wang W, Han B. Dynamic evolution trend and driving mechanisms of water conservation in the Yellow River Basin, China. Sci Rep 2024; 14:26304. [PMID: 39487213 PMCID: PMC11530661 DOI: 10.1038/s41598-024-78241-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024] Open
Abstract
Water conservation (WC) is a critical ecological service function in the Yellow River Basin (YRB). There is currently a lack of detailed exploration of WC development processes and the impact mechanisms of driving factors at spatiotemporal scales in the YRB. By collecting data on DEM, land use, soil, meteorology, reservoirs, and observed discharge, this study established a large-scale WC model using the soil and water assessment tool (SWAT). The abrupt change test, empirical orthogonal function (EOF), wavelet analysis, hierarchical partitioning analysis (HPA), geodetectors, and aridity index were employed to analyze the multi-spatiotemporal characteristics and driving forces of WC calculated using the water balance method. The results are as follows: (1) The average WC among the YRB was 9.11 mm (74.68 × 108 m3) from 1960 to 2020. Pasture and forests contributed to 48.65% and 22.05% of the average annual WC, respectively. (2) WC exhibited four forms: less/more in the YRB, more in the southeast (northwest), and less in the northwest (southeast). (3) Forests and pastures in land use had higher average WC capacity, while Gansu, Shaanxi, and Qinghai ranked in the top three for average WC among the nine provinces. (4) Precipitation was the major driving force affecting WC variations, with the interaction between precipitation and actual evapotranspiration being the most significant. (5) Drought was a significant cause of negative WC. Protecting and managing crucial WC areas was essential for improving the ecological environment. This research elucidates the driving forces of WC in the YRB, providing scientific support for improving regional WC and promoting sustainable development.
Collapse
Affiliation(s)
- Gaolei Zhao
- Henan Key Laboratory of YB Ecological Protection and Restoration, Yellow River Institute of Hydraulic Research, YRCC, Zhengzhou, 450003, China
| | - Shimin Tian
- Henan Key Laboratory of YB Ecological Protection and Restoration, Yellow River Institute of Hydraulic Research, YRCC, Zhengzhou, 450003, China.
| | - Shuai Liang
- Henan Key Laboratory of YB Ecological Protection and Restoration, Yellow River Institute of Hydraulic Research, YRCC, Zhengzhou, 450003, China
| | - Yongcai Jing
- Henan Key Laboratory of YB Ecological Protection and Restoration, Yellow River Institute of Hydraulic Research, YRCC, Zhengzhou, 450003, China
| | - Rongxu Chen
- Henan Key Laboratory of YB Ecological Protection and Restoration, Yellow River Institute of Hydraulic Research, YRCC, Zhengzhou, 450003, China
| | - Wanwan Wang
- Henan Key Laboratory of YB Ecological Protection and Restoration, Yellow River Institute of Hydraulic Research, YRCC, Zhengzhou, 450003, China
| | - Bing Han
- Henan Key Laboratory of YB Ecological Protection and Restoration, Yellow River Institute of Hydraulic Research, YRCC, Zhengzhou, 450003, China.
| |
Collapse
|
2
|
Kwon YH, Kim JA, Park YS, Kim JH, Choi CY. Effects of red-light irradiation and melatonininjection on the antioxidant capacity and occurrence of apoptosis in abalones (Haliotis discus hannai) subjected to thermal stress. Comp Biochem Physiol A Mol Integr Physiol 2024; 296:111689. [PMID: 38945429 DOI: 10.1016/j.cbpa.2024.111689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
High ocean temperatures caused by global warming induce oxidative stress in aquatic organisms. Melatonin treatment and irradiation using red light-emitting diodes (LEDs) have been reported to reduce oxidative stress in a few aquatic organisms. However, the effects of red LED irradiation and melatonin injection on the antioxidant capacity and degree of apoptosis in abalones, which are nocturnal organisms, have not yet been reported. In this study, we compared the expression levels of antioxidant enzymes, total antioxidant capacity, and the degree of apoptosis in abalones subjected to red LED irradiation and melatonin treatment. The results revealed that at high water temperatures (25 °C), the mRNA expression levels of the superoxide dismutase (SOD) and glutathione peroxidase (GPx) genes and the antioxidant activity of SOD decreased in abalones in the red-LED irradiated and melatonin-treated groups compared with those in abalones in the control group. Although high water temperatures induced DNA damage in the abalone samples, the degree of apoptosis was lower in the red-LED irradiated and melatonin-treated groups than in the control group. Overall, the abalones in the melatonin-treated and red-LED irradiated groups showed reduced oxidative stress and increased antioxidant enzyme levels under thermal stress compared with those in the control group. Therefore, red LED irradiation is a promising alternative to melatonin treatment, which is difficult to administer continuously for a long time, for protecting abalones from oxidative stress.
Collapse
Affiliation(s)
- Young Hoon Kwon
- Department of Convergence Study on the Ocean Science and Technology, National Korea Maritime and Ocean University, Busan 49112, Republic of Korea; Division of Marine BioScience, National Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Jin A Kim
- Department of Convergence Study on the Ocean Science and Technology, National Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Young-Su Park
- Department of Nursing, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Jun-Hwan Kim
- Department of Aquatic Life Medicine, Jeju National University, Jeju 63243, Republic of Korea.
| | - Cheol Young Choi
- Department of Convergence Study on the Ocean Science and Technology, National Korea Maritime and Ocean University, Busan 49112, Republic of Korea; Division of Marine BioScience, National Korea Maritime and Ocean University, Busan 49112, Republic of Korea.
| |
Collapse
|
3
|
Lu A, Song Y, Wang D, Liao G, Zheng B, Liu P, Lei T. Kinetic and Thermodynamic Characteristics of Torrefied Acer palmatum. ACS OMEGA 2024; 9:4474-4485. [PMID: 38313524 PMCID: PMC10831971 DOI: 10.1021/acsomega.3c07179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 02/06/2024]
Abstract
The goal of this research was to investigate the effects of torrefying temperature (220, 260, and 300 °C) on the physicochemical properties, kinetics, thermodynamic parameters, and reaction processes of Acer palmatum (AP) during the pyrolysis process. The kinetics of raw materials and torrefied biomass were studied by using three kinetic models, and the main function graph approach was employed to find the reaction mechanism. The torrefied biomass produced at temperatures of 220 °C (AP-220), 260 °C (AP-260), and 300 °C (AP-300) was thermogravimetrically analyzed at four different heating rates (5, 10, 15, and 20 °C/min). In comparison to the raw material, the average activation energy of torrefied biomass declined with increasing temperature, from 174.13 to 84.67 kJ/mol (FWO), 172.52 to 81.24 kJ/mol (KAS and DAEM). The volatile contents of AP and AP-220 are higher than those of AP-260 and AP-300, indicating that the random nucleation model occupies the central position. Compared with the raw biomass, the average Gibbs free energy (ΔG) of torrefied biomass increased from 157.97 to 195.38 kJ/mol. The mean enthalpy change (ΔH) during the torrefaction process is positive, while the mean entropy change (ΔS) of the torrefaction of biomass is negative, decreasing from 16.93 to -151.53 kJ/mol (FWO) and from 14.36 to -156.06 kJ/mol (KAS and DAEM). Overall, the findings provide a comprehensive understanding of the kinetics and improved features of torrefied biomass as a high-quality solid fuel.
Collapse
Affiliation(s)
- Ailing Lu
- Shangtian
Environmental Restoration Co., Ltd, Changzhou 213164, China
| | - Yintao Song
- National-Local
Joint Engineering Research Center of Biomass Refining and High-Quality
Utilization, Changzhou Key Laboratory of Biomass Green, Safe &
High Value Utilization Technology, Institute of Urban and Rural Mining,
Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization
Technology, Changzhou University, Changzhou 213164, China
| | - Dianer Wang
- Shangtian
Environmental Restoration Co., Ltd, Changzhou 213164, China
| | - Guangdong Liao
- Shangtian
Environmental Restoration Co., Ltd, Changzhou 213164, China
| | - Binguo Zheng
- School
of Civil Engineering and Architecture, Zhengzhou
Institute of Aviation Industry Management, Zhengzhou, Henan 450046, China
| | - Peng Liu
- National-Local
Joint Engineering Research Center of Biomass Refining and High-Quality
Utilization, Changzhou Key Laboratory of Biomass Green, Safe &
High Value Utilization Technology, Institute of Urban and Rural Mining,
Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization
Technology, Changzhou University, Changzhou 213164, China
| | - Tingzhou Lei
- National-Local
Joint Engineering Research Center of Biomass Refining and High-Quality
Utilization, Changzhou Key Laboratory of Biomass Green, Safe &
High Value Utilization Technology, Institute of Urban and Rural Mining,
Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization
Technology, Changzhou University, Changzhou 213164, China
| |
Collapse
|
4
|
Zhao G, Tian S, Jing Y, Cao Y, Liang S, Han B, Cheng X, Liu B. Establishing a quantitative assessment methodology framework of water conservation based on the water balance method under spatiotemporal and different discontinuous ecosystem scales. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:119006. [PMID: 37738722 DOI: 10.1016/j.jenvman.2023.119006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/26/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023]
Abstract
Water conservation (WC) is an essential terrestrial ecosystem service that mitigates surface runoff and replenishes groundwater, which has received considerable attention under the dual pressures of climate change and human activity. However, there is insufficient understanding of the trends in WC changes on temporal (annual, monthly, daily), spatial, and ecosystem scales. This study proposed a quantitative assessment methodology framework (QAMF) for analyzing the spatiotemporal variation of WC under different discontinuous ecosystems. The QAMF mainly used models and methods such as the hydrological model (SWAT), calibration and uncertainty program (SWAT-CUP), WC calculation formula (water balance method), and spatial analysis method (empirical orthogonal function and wavelet analysis). It was applied to the source region of the Yellow River (SRYR), where the ecological landscape pattern underwent varying degrees of degradation, and WC capacity decreased. The results show that: Firstly, the constructed SWAT in the SRYR had high accuracy, and the proposed formula for calculating WC was suitable for multi-temporal scale analysis of WC in spatially distributed discontinuous basins. Secondly, the annual and monthly WC were respectively 81.00-184.13 mm and -28.58-107.64 mm, and daily WC was positive during extreme precipitation periods and negative during dry periods. The regulating effect of WC was fully reflected on the daily scale, partially reflected on the monthly scale, and absent on the annual scale. Third, the crucial WC area was mainly distributed in the southeast, and there was a significant primary yearly cycle of WC in the SRYR. Finally, different ecosystems exhibited different WC capabilities, and protecting the diversity of ecosystems played an essential role in maintaining and improving the WC function in the SRYR. This project has great scientific significance and technological support for scientifically evaluating the WC capacity in the SRYR.
Collapse
Affiliation(s)
- Gaolei Zhao
- Henan Key Laboratory of YB Ecological Protection and Restoration, Yellow River Institute of Hydraulic Research, YRCC, Zhengzhou, 450003, China
| | - Shimin Tian
- Henan Key Laboratory of YB Ecological Protection and Restoration, Yellow River Institute of Hydraulic Research, YRCC, Zhengzhou, 450003, China.
| | - Yongcai Jing
- Henan Key Laboratory of YB Ecological Protection and Restoration, Yellow River Institute of Hydraulic Research, YRCC, Zhengzhou, 450003, China
| | - Yongtao Cao
- Henan Key Laboratory of YB Ecological Protection and Restoration, Yellow River Institute of Hydraulic Research, YRCC, Zhengzhou, 450003, China
| | - Shuai Liang
- Henan Key Laboratory of YB Ecological Protection and Restoration, Yellow River Institute of Hydraulic Research, YRCC, Zhengzhou, 450003, China
| | - Bing Han
- Henan Key Laboratory of YB Ecological Protection and Restoration, Yellow River Institute of Hydraulic Research, YRCC, Zhengzhou, 450003, China
| | - Xiaolong Cheng
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China
| | - Bairan Liu
- School of Water Conservancy and Civil Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|