1
|
Song XJ, Li XD, Chen Y, Wang J, Zou JB, Zhu ZH, Liu G. Differences in plant responses to nitrogen addition between the central and edge populations of invasive Galinsoga quadriradiata in China. JOURNAL OF PLANT RESEARCH 2025; 138:243-251. [PMID: 39903396 DOI: 10.1007/s10265-025-01617-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/17/2025] [Indexed: 02/06/2025]
Abstract
Increased nitrogen deposition significantly impacts invasive plants, leading to population differentiation due to different environmental pressures during expansion. However, various populations respond differently to elevated nitrogen levels. This study explores the responses of central and edge populations of the annual invasive plant Galinsoga quadriradiata to different levels of nitrogen addition. The results indicate that the central population has a stronger need for nitrogen, with nitrogen addition promoting the growth of its aboveground parts, reducing intraspecific competition, and increasing reproductive allocation and total biomass. Specifically, nitrogen addition provides more nutritional resources, easing resource competition among plants, reducing intraspecific competitive pressure, and allowing plants to allocate more energy to growth and reproduction, thereby enhancing their expansion potential. In contrast, the edge populations respond differently to nitrogen. Although nitrogen addition promotes the growth of their underground parts and enhances root development, the impact on aboveground parts is smaller. The enhancement of underground parts helps edge populations better adapt to barren environments, improving their survival and competitive ability in new environments, thus increasing their expansion potential. Overall, the growth impact on edge populations due to nitrogen addition is smaller, possibly indicating they have exceeded their nitrogen limit. The study demonstrates that the degree of population differentiation in invasive plants at different invasion stages is a critical factor in studying their spread potential, aiding in predicting plant invasion trends under climate change and providing theoretical support for formulating targeted management strategies.
Collapse
Affiliation(s)
- Xing-Jiang Song
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, 710119, People's Republic of China
| | - Xin-Di Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, 710119, People's Republic of China
| | - Yu Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, 710119, People's Republic of China
| | - Jia Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, 710119, People's Republic of China
| | - Jia-Bin Zou
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, 710119, People's Republic of China.
| | - Zhi-Hong Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, 710119, People's Republic of China
| | - Gang Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi Province, 710119, People's Republic of China.
- Research Center for UAV Remote Sensing, Shaanxi Normal University, Xi'an, 710119, People's Republic of China.
- Changqing Teaching & Research Base of Ecology, Shaanxi Normal University, Xi'an, 710119, People's Republic of China.
| |
Collapse
|
2
|
Xu F, Zhang S, Wu Q, An C, Li X, Chen X, Chen Y, Zhang X, Dong Z. A biodegradable multifunctional pectin-montmorillonite fertilizer coating: Controlled-release, water-retention and soil-cementation. Int J Biol Macromol 2024; 277:134118. [PMID: 39098460 DOI: 10.1016/j.ijbiomac.2024.134118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Coated fertilizers have been widely used to improve fertility in barren land. However, improving soil structure and water-retention capacity is also essential for arid and semi-arid areas with sandy soils to promote crop growth. Most currently available coated fertilizers rarely meet these requirements, limiting their application scope. Therefore, this study "tailored" pectin-montmorillonite (PM) multifunctional coatings for arid areas, featuring intercalation reactions and nanoscale entanglement between pectin and montmorillonite via hydrogen bonding and electrostatic and van der Waals forces. Notably, PM coatings have demonstrated an effective "relay" model of action. First, the PM-50 coating could act as a "shield" to protect urea pills, increasing the mechanical strength (82.12 %). Second, this coating prolonged the release longevity of urea (<0.5 h to 15 days). Further, the remaining coating performed a water-retention function. Subsequently, the degraded coating improved the soil properties. Thus, this coating facilitated the growth of wheat seedlings in a simulated arid environment. Moreover, the cytotoxicity test, life cycle assessment, and soil biodegradation experiment showed that the PM coating exhibited minimal environmental impact. Overall, the "relay" model of PM coating overcomes the application limitations of traditional coated fertilizers and provides a sustainable strategy for developing coating materials in soil degradation areas.
Collapse
Affiliation(s)
- Fangzhou Xu
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Shikai Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Qicong Wu
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Chunchun An
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xiaoqian Li
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xinchuang Chen
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Tai'an, Shandong 271018, PR China
| | - Yang Chen
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xincheng Zhang
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Zhi Dong
- College of Forestry, Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
3
|
Zhang J, Wu B, Wang G, Zhang J, Jia C. Responses of diazotrophic network structure and community diversity to alfalfa-maize intercropping are soil property-dependent. Front Microbiol 2024; 15:1425898. [PMID: 39360311 PMCID: PMC11445037 DOI: 10.3389/fmicb.2024.1425898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Intercropping and soil properties both affect soil diazotrophic communities. However, the specific effects that alfalfa-maize intercropping has on diazotrophic networks and community diversity under different soil properties remain unclear. Methods In this study, we investigated the soil diazotrophic communities of two crop systems, alfalfa monoculture (AA) and alfalfa-maize intercropping (A/M), in two sites with similar climates but different soil properties (poor vs. average). Results and discussion The diazotrophic network complexity and community diversity were higher at the site with poor soil than at the site with average soil (p < 0.05). Community structure also varied significantly between the sites with poor and average soil (p < 0.05). This divergence was mainly due to the differences in soil nitrogen, phosphorus, and organic carbon contents between the two sites. At the site with poor soil, the A/M system had lower diazotrophic diversity, lower network complexity and greater competition between diazotrophs than the AA system (p < 0.05) because intercropping intensified the soil phosphorus limitation under poor soil conditions. However, in the average soil, it was the A/M system that had an altered diazotrophic structure, with an increased abundance of 11 bacterial genera and a decreased abundance of three bacterial genera (p < 0.05). Conclusion Our results indicated that the effects of alfalfa-maize intercropping on diazotrophic communities were soil property-dependent.
Collapse
Affiliation(s)
- Jinglei Zhang
- Shandong Engineering Research Centre for Ecological Horticultural Plant Breeding, Institute of Leisure Agriculture, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Yellow River Delta Modern Agriculture Research Institute, Shandong Academy of Agricultural Sciences, Dongying, Shandong, China
| | - Bo Wu
- Shandong Engineering Research Centre for Ecological Horticultural Plant Breeding, Institute of Leisure Agriculture, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Guoliang Wang
- Shandong Engineering Research Centre for Ecological Horticultural Plant Breeding, Institute of Leisure Agriculture, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Jinhong Zhang
- Shandong Engineering Research Centre for Ecological Horticultural Plant Breeding, Institute of Leisure Agriculture, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Chunlin Jia
- Shandong Engineering Research Centre for Ecological Horticultural Plant Breeding, Institute of Leisure Agriculture, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| |
Collapse
|
4
|
Wang M, Li D, Frey B, Gao D, Liu X, Chen C, Sui X, Li M. Land use modified impacts of global change factors on soil microbial structure and function: A global hierarchical meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173286. [PMID: 38772492 DOI: 10.1016/j.scitotenv.2024.173286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
Nitrogen cycling in terrestrial ecosystems is critical for biodiversity, vegetation productivity and biogeochemical cycling. However, little is known about the response of functional nitrogen cycle genes to global change factors in soils under different land uses. Here, we conducted a multiple hierarchical mixed effects meta-analyses of global change factors (GCFs) including warming (W+), mean altered precipitation (MAP+/-), elevated carbon dioxide concentrations (eCO2), and nitrogen addition (N+), using 2706 observations extracted from 200 peer-reviewed publications. The results showed that GCFs had significant and different effects on soil microbial communities under different types of land use. Under different land use types, such as Wetland, Tundra, Grassland, Forest, Desert and Agriculture, the richness and diversity of soil microbial communities will change accordingly due to differences in vegetation cover, soil management practices and environmental conditions. Notably, soil bacterial diversity is positively correlated with richness, but soil fungal diversity is negatively correlated with richness, when differences are driven by GCFs. For functional genes involved in nitrification, eCO2 in agricultural soils and the interaction of N+ with other GCFs in grassland soils stimulate an increase in the abundance of the AOA-amoA gene. In agricultural soil, MAP+ increases the abundance of nifH. W+ in agricultural soils and N+ in grassland soils decreased the abundance of nifH. The abundance of the genes nirS and nirK, involved in denitrification, was mainly negatively affected by W+ and positively affected by eCO2 in agricultural soil, but negatively affected by N+ in grassland soil. This meta-analysis was important for subsequent research related to global climate change. Considering data limitations, it is recommended to conduct multiple long-term integrated observational experiments to establish a scientific basis for addressing global changes in this context.
Collapse
Affiliation(s)
- Mingyu Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Detian Li
- Griffith School of Environment and Science and the Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | - Beat Frey
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Decai Gao
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, PR China
| | - Xiangyu Liu
- Griffith School of Environment and Science and the Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | - Chengrong Chen
- Griffith School of Environment and Science and the Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | - Xin Sui
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Maihe Li
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland; Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, PR China; School of Life Science, Hebei University, Baoding, China.
| |
Collapse
|
5
|
Yang Y, Liu H, Chen Y, Wu L, Huang G, Lv J. Soil nitrogen cycling gene abundances in response to organic amendments: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171048. [PMID: 38387590 DOI: 10.1016/j.scitotenv.2024.171048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Quantification of nitrogen (N) cycling genes contributes to our best understanding of N transformation processes. The application of organic amendment (OA) is widely recognized as an effective measure to improve N management and soil fertility in various ecosystems. However, our understanding of N-cycling gene abundances in response to OA application remains deficient. We performed a meta-analysis embracing 124 sets of observation data to study the impact of OA application on the main N-cycling gene abundances, including nifH, amoA, nirS, nirK and nosZ. We found that the significantly positive response of N-cycling gene abundances to OA application was attributed to the rotation cropping system (by 6.45 %-104.20 %) in the field experiment (by 19.43 %-52.56 %), OA application alone (by 8.29 %-111.70 %) especially manure addition (by 33.43 %-98.70 %), application dose of OAs within 10-20 t ha-1 (by 45.33 %-381.90 %), fertilization duration <5 years (by 43.69 %-112.63 %), C/N of OA <25 (by 37.87 %-160.90 %), SOC lower than 1.2 % (by 41.44 %-157.89 %) and application to alkaline soil (by 32.24 %-134.40 %). Moreover, soil organic carbon (SOC) and pH were the most essential regulators associated with N-cycling gene abundances with OA application. Identification of key driving factors of the abundance of N-cycling functional genes will help remedy strategies for managing OAs in ecosystems.
Collapse
Affiliation(s)
- Yajun Yang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation Chinese Academy of Sciences & College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| | - Hexiang Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation Chinese Academy of Sciences & College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yi Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation Chinese Academy of Sciences & College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Lijuan Wu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation Chinese Academy of Sciences & College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Guan Huang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation Chinese Academy of Sciences & College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Jialong Lv
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation Chinese Academy of Sciences & College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| |
Collapse
|
6
|
Zeng Q, Zhang Q, Fan Y, Gao Y, Yuan X, Zhou J, Dai H, Chen Y. Phosphorus availability regulates nitrogen fixation rate through a key diazotrophic assembly: Evidence from a subtropical Moso bamboo forest subjected to nitrogen application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169740. [PMID: 38160820 DOI: 10.1016/j.scitotenv.2023.169740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/08/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Biological N fixation (BNF) is an important N input process for terrestrial ecosystems. Long-term N application increases the availability of N, but may also lead to phosphorus (P) deficiency or an imbalance between N and P. Here, we performed a 5-year N application experiment in a subtropical Phyllostachys heterocycla forest in site and a P application experiment in vitro to investigate the effect of N application on the BNF rate and its regulatory factor. The BNF rate, nifH gene, free-living diazotrophic community composition and plant properties were measured. We found that N application suppressed the BNF rate and nifH gene abundance, whereas the BNF rate in soils with added P was significantly higher overall than that in soils without added P. Moreover, we identified a key diazotrophic assembly (Mod#2), primarily comprising Bradyrhizobium, Geobacter, Desulfovibrio, Anaeromyxobacter, and Pseudodesulfovibrio, which explained 77 % of the BNF rate variation. There was a significant positive correlation between the Mod#2 abundance and soil available P, and the random forest results showed that soil available P is the most important factor affecting the Mod#2 abundance. Our findings highlight the importance of soil P availability in regulating the activities of key diazotrophs, and thus increasing P supply may help to promote N accumulation and primary productivity through facilitating the BNF process in forest ecosystems.
Collapse
Affiliation(s)
- Quanxin Zeng
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; State Key Laboratory of Subtropical Mountain Ecology (Funded by the Ministry of Science and Technology and Fujian Province), Fujian Normal University, Fuzhou 350007, China
| | - Qiufang Zhang
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; State Key Laboratory of Subtropical Mountain Ecology (Funded by the Ministry of Science and Technology and Fujian Province), Fujian Normal University, Fuzhou 350007, China.
| | - Yuexin Fan
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; State Key Laboratory of Subtropical Mountain Ecology (Funded by the Ministry of Science and Technology and Fujian Province), Fujian Normal University, Fuzhou 350007, China
| | - Yanli Gao
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; State Key Laboratory of Subtropical Mountain Ecology (Funded by the Ministry of Science and Technology and Fujian Province), Fujian Normal University, Fuzhou 350007, China
| | - Xiaochun Yuan
- College of Tourism, Wuyi University, Wuyishan 354300, China
| | - Jiacong Zhou
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Hui Dai
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; State Key Laboratory of Subtropical Mountain Ecology (Funded by the Ministry of Science and Technology and Fujian Province), Fujian Normal University, Fuzhou 350007, China
| | - Yuehmin Chen
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; State Key Laboratory of Subtropical Mountain Ecology (Funded by the Ministry of Science and Technology and Fujian Province), Fujian Normal University, Fuzhou 350007, China.
| |
Collapse
|
7
|
Chen M, Zhou S, Xiang P, Wang Y, Luo X, Zhang X, Wen D. Elevated CO 2 and nitrogen addition enhance the symbiosis and functions of rhizosphere microorganisms under cadmium exposure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:120012. [PMID: 38171127 DOI: 10.1016/j.jenvman.2023.120012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
Soil microbes are fundamental to ecosystem health and productivity. How soil microbial communities are influenced by elevated atmospheric carbon dioxide (eCO2) concentration and nitrogen (N) deposition under heavy metal pollution remains uncertain, despite global exposure of terrestrial ecosystems to eCO2, high N deposition and heavy metal stress. Here, we conducted a four year's open-top chamber experiment to assess the effects of soil cadmium (Cd) treatment (10 kg hm-2 year-1) alone and combined treatments of Cd with eCO2 concentration (700 ppm) and/or N addition (100 kg hm-2 year-1) on tree growth and rhizosphere microbial community. Relative to Cd treatment alone, eCO2 concentration in Cd contaminated soil increased the complexity of microbial networks, including the number links, average degree and positive/negative ratios. The combined effect of eCO2 and N addition in Cd contaminated soil not only increased the complexity of microbial networks, but also enhanced the abundance of microbial urealysis related UreC and nitrifying related amoA1 and amoA2, and the richness of arbuscular mycorrhiza fungi (AMF), thereby improving the symbiotic functions between microorganisms and plants. Results from correlation analysis and structural equation model (SEM) further demonstrated that eCO2 concentration and N addition acted on functions and networks differently. Elevated CO2 positively regulated microbial networks and functions through phosphorus (P) and Cd concentration in roots, while N addition affected microbial functions through soil available N and soil organic carbon (SOC) concentration and microbial network through soil Cd concentration. Overall, our findings highlight that eCO2 concentration and N addition make microbial communities towards ecosystem health that may mitigate Cd stress, and provide new insights into the microbiology supporting phytoremediation for Cd contaminated sites in current and future global change scenarios.
Collapse
Affiliation(s)
- Minghao Chen
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Science, Guangzhou, 510650, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuyidan Zhou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Science, Guangzhou, 510650, China
| | - Ping Xiang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Science, Guangzhou, 510650, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yutao Wang
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xianzhen Luo
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Science, Guangzhou, 510650, China
| | - Xiaofeng Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Science, Guangzhou, 510650, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dazhi Wen
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Science, Guangzhou, 510650, China; College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, 341000, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
O'Sullivan CM, Deo RC, Ghahramani A. Explainable AI approach with original vegetation data classifies spatio-temporal nitrogen in flows from ungauged catchments to the Great Barrier Reef. Sci Rep 2023; 13:18145. [PMID: 37875554 PMCID: PMC10598196 DOI: 10.1038/s41598-023-45259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023] Open
Abstract
Transfer of processed data and parameters to ungauged catchments from the most similar gauged counterpart is a common technique in water quality modelling. But catchment similarities for Dissolved Inorganic Nitrogen (DIN) are ill posed, which affects the predictive capability of models reliant on such methods for simulating DIN. Spatial data proxies to classify catchments for most similar DIN responses are a demonstrated solution, yet their applicability to ungauged catchments is unexplored. We adopted a neural network pattern recognition model (ANN-PR) and explainable artificial intelligence approach (SHAP-XAI) to match all ungauged catchments that flow to the Great Barrier Reef to gauged ones based on proxy spatial data. Catchment match suitability was verified using a neural network water quality (ANN-WQ) simulator trained on gauged catchment datasets, tested by simulating DIN for matched catchments in unsupervised learning scenarios. We show that discriminating training data to DIN regime benefits ANN-WQ simulation performance in unsupervised scenarios ( p< 0.05). This phenomenon demonstrates that proxy spatial data is a useful tool to classify catchments with similar DIN regimes. Catchments lacking similarity with gauged ones are identified as priority monitoring areas to gain observed data for all DIN regimes in catchments that flow to the Great Barrier Reef, Australia.
Collapse
Affiliation(s)
- Cherie M O'Sullivan
- University of Southern Queensland, Toowoomba, QLD, 4350, Australia. Cherie.O'
| | - Ravinesh C Deo
- School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, QLD, 4300, Australia
- Center for Applied Climate Sciences, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Afshin Ghahramani
- University of Southern Queensland, Toowoomba, QLD, 4350, Australia
- Department of Environment and Science, Queensland Government, Rockhampton, QLD, 4700, Australia
| |
Collapse
|
9
|
Sifton MA, Smith SM, Thomas SC. Biochar-biofertilizer combinations enhance growth and nutrient uptake in silver maple grown in an urban soil. PLoS One 2023; 18:e0288291. [PMID: 37463169 PMCID: PMC10353828 DOI: 10.1371/journal.pone.0288291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/22/2023] [Indexed: 07/20/2023] Open
Abstract
Declining tree health status due to pollutant impacts and nutrient imbalance is widespread in urban forests; however, chemical fertilizer use is increasingly avoided to reduce eutrophication impacts. Biochar (pyrolyzed organic waste) has been advocated as an alternative soil amendment, but biochar alone generally reduces plant N availability. The combination of biochar and either organic forms of N or Plant Growth Promoting Microbes (PGPMs) as biofertilizers may address these challenges. We examined the effects of two wood biochar types with Bacillus velezensis and an inactivated yeast (IY) biofertilizer in a three-month factorial greenhouse experiment with Acer saccharinum L. (silver maple) saplings grown in a representative urban soil. All treatments combining biochars with biofertilizers significantly increased sapling growth, with up to a 91% increase in biomass relative to controls. Growth and physiological responses were closely related to nutrient uptake patterns, with nutrient vector analyses indicating that combined biochar and biofertilizer treatments effectively addressed nutrient limitations of both macronutrients (N, P, K, Mg, Ca), and micronutrients (B, Fe, Mn, Mo, Na, S, and Zn). Biochar-biofertilizer treatments also reduced foliar concentrations of Cu, suggesting potential to mitigate toxic metal impacts common in urban forestry. We conclude that selected combinations of biochar and biofertilizers have substantial promise to address common soil limitations to tree performance in urban settings.
Collapse
Affiliation(s)
- Melanie A Sifton
- Institute of Forestry and Conservation, University of Toronto, Toronto, ON, Canada
| | - Sandy M Smith
- Institute of Forestry and Conservation, University of Toronto, Toronto, ON, Canada
| | - Sean C Thomas
- Institute of Forestry and Conservation, University of Toronto, Toronto, ON, Canada
| |
Collapse
|