1
|
Zhang N, Chen X, Ren T, Luo J, Liang J, Wang ET, Shi F. Differentiation of soil metabolic function and microbial communities between plantations and natural reforestation. Front Microbiol 2025; 16:1544641. [PMID: 40092039 PMCID: PMC11906678 DOI: 10.3389/fmicb.2025.1544641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Reforestation plays a vital role in restoring the soil degradation areas. However, the mechanisms by which different restoration approaches affect the soil properties and microbial communities remain unclear. Aiming to understand the interactions between plant species, soil properties, and microbial communities in different restoration approaches, we investigated the soil microbial community using nontargeted metabolomics to explore how the reforestation approach affects soil physicochemical properties, soil metabolites, and soil microbial communities. The results showed that the reforestation approach, soil layer, and their interactive effects significantly affected soil organic carbon, total nitrogen, dissolved organic carbon, available phosphorus concentrations, and root traits. The diversity and composition of bacterial and fungal communities in natural reforestation (NR) were different from those in artificial mono-plantations, and their network interactions were more significant in NR than in artificial plantations. A clear separation of metabolites between the artificial plantations and NR was observed in the soil metabolite analysis. Two pathways, linoleic acid metabolism, and valine, leucine, and isoleucine biosynthesis, were significantly regulated between the artificial mono-plantations and NR. Different soil traits were significantly correlated with dominant microbial taxa in the four reforestation approaches. 13-L-hydroperoxylinoleic acid, 13-S-hydroxyoctadecadienoic acid, homovanillin, and 9,10-epoxyoctadecenoic acid showed the highest correlation with the microbial taxa in the network. Partial least squares path modeling (PLS-PM) shows that root-mediated soil physicochemical properties were the primary factors affecting the bacterial community among the reforestation approaches. The soil fungal community is directly regulated by plant roots in the subsoil and indirectly regulated by the root-mediated physicochemical properties in the topsoil. We conclude that different reforestation approaches affect the soil microbial community through root and soil physicochemical properties rather than soil metabolites.
Collapse
Affiliation(s)
- Nannan Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiaoxia Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tingju Ren
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jiangcheng Luo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Jin Liang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - En Tao Wang
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Fusun Shi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
2
|
Zhao X, He S, Rui R, Hei J, He X, Wang S. Introduction of Panax notoginseng into pine forests significantly enhances the diversity, stochastic processes, and network complexity of nitrogen-fixing bacteria in the soil. Front Microbiol 2025; 16:1531875. [PMID: 39963494 PMCID: PMC11830724 DOI: 10.3389/fmicb.2025.1531875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/22/2025] [Indexed: 02/20/2025] Open
Abstract
Introduction Nitrogen-fixing bacteria (NFB) have a pivotal impact on the nitrogen cycle within agroforestry systems. The organic management of the Panax notoginseng (sanqi)-Pinus armandii agroforestry (SPA) system resulted in nitrogen deficiency because of the lack of application of chemical fertilizers. Therefore, assessing the variability in NFB due to the cultivation of sanqi in the SPA system becomes crucial. Methods The seasonal dynamics in the abundance, diversity, and community structure of NFB in the soil of monocropping pine (MP) and SPA systems were assessed using real-time quantitative polymerase chain reaction and high-throughput sequencing technology. Results and discussion Sanqi cultivation triggered a decrease in the abundance of NFB but increased α diversity. Additionally, significant differences in the community structure of NFB were noted between the MP and SPA systems. Moreover, the abundance of Bradyrhizobium and Azospirillum increased in the soil after sanqi was cultivated. Furthermore, the cultivation of sanqi broadened the ecological niche breadth of NFB and increased the stochasticity in its community structure assembly (i.e., dispersal limitation). Additionally, the SPA system increased the network complexity but not the stability of NFB. The structural equation model (SEM) revealed that pH directly impacted the network complexity and stability of NFB in the SPA system. Sanqi cultivation positively influences the community characteristics of NFB in the soil in the SPA system. Our study provides new insights into nitrogen cycling and utilization in the SPA system.
Collapse
Affiliation(s)
- Xiaoyan Zhao
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Kunming, China
| | - Shu He
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Kunming, China
| | - Rui Rui
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Kunming, China
| | - Jingying Hei
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Kunming, China
| | - Xiahong He
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Kunming, China
| | - Shu Wang
- Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Kunming, Yunnan, China
| |
Collapse
|
3
|
Li D, Chen D, Hou C, Chen H, Zhou Q, Wu J. Soil microfauna mediate multifunctionality under multilevel warming in a primary forest. J Anim Ecol 2025; 94:58-68. [PMID: 39551974 DOI: 10.1111/1365-2656.14210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/05/2024] [Indexed: 11/19/2024]
Abstract
Soil microfauna play a crucial role in maintaining multiple functions associated with soil phosphorous, nitrogen and carbon cycling. Although both soil microfauna diversity and multifunctionality are strongly affected by climate warming, it remains unclear how their relationships respond to different levels of warming. We conducted a 3-year multilevel warming experiment with five warming treatments in a subtropical primary forest. Using infrared heating systems, the soil surface temperature in plots was maintained at 0.8, 1.5, 3.0 and 4.2°C above ambient temperature (control). Our findings indicated that low-level warming (+0.8-1.5°C) increased soil multifunctionality, as well as nematode and protist diversity, compared with the control. In contrast, high-level warming (+4.2°C) significantly reduced these variables. We also identified significant positive correlations between soil multifunctionality and nematode and protist diversity in the 0-10 cm soil layer. Notably, we found that soil multifunctionality and protist diversity did not change significantly under 3.0°C warming treatment. Our results imply that a temperature increase of around 3°C may represent a critical threshold in subtropical forests, which is of great importance for identifying response measures to global warming from the perspective of microfauna in the surface soil. Our findings provide new evidence on how soil microfauna regulate multifunctionality under varying degrees of warming in primary forests.
Collapse
Affiliation(s)
- Debao Li
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Yunnan University, Kunming, China
| | - Deyun Chen
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Yunnan University, Kunming, China
| | - Chunyu Hou
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Yunnan University, Kunming, China
| | - Hong Chen
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Yunnan University, Kunming, China
| | - Qingqiu Zhou
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Yunnan University, Kunming, China
| | - Jianping Wu
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Laboratory of Soil Ecology and Health in Universities of Yunnan Province, Yunnan University, Kunming, China
| |
Collapse
|
4
|
Yang H, Yao B, Lian J, Su Y, Li Y. Tree species-dependent effects of afforestation on soil fungal diversity, functional guilds and co-occurrence networks in northern China. ENVIRONMENTAL RESEARCH 2024; 263:120258. [PMID: 39476928 DOI: 10.1016/j.envres.2024.120258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/09/2024]
Abstract
Afforestation exerts a profound impact on soil fungal communities, with the nature and extent of these changes significantly influenced by the specific tree species selected. While extensive research has addressed the aboveground ecological outcomes of afforestation, the nuanced interactions between tree species and soil fungal dynamics remain underexplored. This study investigated the effects of afforestation with Caragana microphylla (CMI), Populus simonii (PSI), and Pinus sylvestris var. mongolica (PSY) on soil fungal diversity, functional guilds, and co-occurrence networks, drawing comparisons with neighboring grasslands. Our findings reveal a significant increase in soil fungal Chao1 richness following afforestation, though the degree of enhancement varied across tree species. Specifically, CMI and PSI forests showed notable increases in fungal richness, whereas the response in PSY forests was comparatively modest. Saprotrophic fungal groups, integral to organic matter decomposition, showed a substantial increase across all afforested sites, with CMI forests exhibiting an impressive 205.58% rise. Conversely, pathogenic fungi, which can negatively impact plant health, demonstrated a marked decrease within plantation forests. Symbiotic groups, particularly ectomycorrhizal fungi, were notably enriched solely in PSI forests. Co-occurrence network analysis further indicated that afforestation alters fungal network complexity: CMI forests displayed increased network interactions, while PSI and PSY forests exhibited a reduction in network connectivity. Soil bulk density and organic carbon content emerged as key factors influencing network complexity, whereas tree species identity played a crucial role in shaping soil fungal community composition. Collectively, these results emphasize the importance of adopting a species-specific strategy for afforestation to optimize soil fungal diversity and network structure, ultimately enhancing the ecological resilience and sustainability of forest plantation ecosystems.
Collapse
Affiliation(s)
- Hongling Yang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region of Gansu Province, Lanzhou, China
| | - Bo Yao
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Jie Lian
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Yongzhong Su
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Yulin Li
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region of Gansu Province, Lanzhou, China.
| |
Collapse
|
5
|
Ding K, Lu M, Zhang Y, Liu Q, Zhang Y, Li Y, Yang Q, Shen Z, Tong Z, Zhang J. Depth-dependent effects of forest diversification on soil functionality and microbial community characteristics in subtropical forests. Microbiol Res 2024; 289:127931. [PMID: 39442466 DOI: 10.1016/j.micres.2024.127931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
Soil microbes are critical to the maintenance of forest ecosystem function and stability. Forest diversification, such as monocultures versus mixed forests stands, can strongly influence microbial community patterns and processes, as well as their role in soil ecosystem multifunctionality, such as in subtropical forest ecosystems. However, less is known about these patterns and processes vary with soil depth. Here, we investigated the results of an eight-year forest diversification field experiment comparing the soil ecosystem multifunctionality, bacterial and fungal community assembly, and network patterns in mixed versus monoculture plantations along vertical profiles (0-80 cm depth) in a subtropical region. We found that the introduction of broadleaf trees in coniferous monocultures led to enhanced synergies between multiple functions, thus improving soil multifunctionality. The effects of mixed plantations on the functional potential in top soils were greater than in deep soils, especially for carbon degradation genes (apu, xylA, cex, and glx). Microbial community assembly in the top layer, particularly in mixed plantations, was dominated by stochastic processes, whereas deterministic were more important in the deep layer. Soil microbial network complexity and stability were higher in the top layer of mixed plantations, but in the deep layer was monoculture. Interestingly, the changes in microbial communities and multifunctionality in the top layer were mainly related to variation in nutrients, whereas those in the deep were more influenced by soil moisture. Overall, we reveal positive effects of mixed forest stands on soil microbial characteristics and functionality compared to that of monocultures. Our findings highlighted the importance of enhancing functional diversity through the promotion of tree species diversity, and managers can better develop forest management strategies to promote soil health under global change scenarios.
Collapse
Affiliation(s)
- Kai Ding
- State Key Laboratory of Subtropical Silviculture, College of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, PR China
| | - Meng Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, PR China
| | - Yuting Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, PR China
| | - Qiyan Liu
- State Key Laboratory of Subtropical Silviculture, College of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, PR China
| | - Yiman Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, PR China
| | - Yinrong Li
- State Key Laboratory of Subtropical Silviculture, College of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, PR China
| | - Qi Yang
- State Key Laboratory of Subtropical Silviculture, College of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, PR China
| | - Zhenming Shen
- Agricultural and Rural Bureau of Lin'an District, Hangzhou, Zhejiang 311300, PR China.
| | - Zaikang Tong
- State Key Laboratory of Subtropical Silviculture, College of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, PR China.
| | - Junhong Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry & Bio-technology, Zhejiang A&F University, Lin'an, Hangzhou, Zhejiang 311300, PR China.
| |
Collapse
|
6
|
He K, Lai Y, Hu S, Song M, Su Y, Li C, Wu X, Zhang C, Hua Y, Huang J, Guo S, Xu Y. Assembly Characteristics and Influencing Factors of the Soil Microbial Community in the Typical Forest of Funiu Mountain. Microorganisms 2024; 12:2355. [PMID: 39597743 PMCID: PMC11596301 DOI: 10.3390/microorganisms12112355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024] Open
Abstract
Assessing the relationship between litter characteristics and soil microbial community traits across different forest types can enhance our understanding of the synergistic interactions among litter, soil, and microorganisms. This study focused on three representative forest types in the Funiu Mountains-Larix gmelinii (LG), Quercus aliena var. acutiserrata (QA), and Quercus aliena var. acutiserrata + Pinus armandii (QAPA). The findings indicated no significant differences in Chao1 among the three forests; however, the Shannon index exhibited an initial increase followed by a decline. NMDS and ANOSIM analyses revealed significant structural differences across these forest types. Network topological metrics (nodes, edges, average degree, and average path distance) for bacterial taxa were higher in LG and QA compared with QAPA. Additionally, LG and QA demonstrated significantly greater average niche breadth than QAPA. The results from the null models (the proportion occupied by dispersal limitation is 62.2%, 82.2%, and 64.4% in LG, QA, and QAPA), modified stochasticity ratio (LG: 0.708, QA: 0.664, and QAPA: 0.801), and neutral community models (LG: R2 = 0.665, QA: R2 = 0.630, and QAPA: R2 = 0.665) suggested that stochastic processes predominantly govern the assembly of soil bacterial communities. Random forest analysis alongside Mantel tests highlighted LTP (litter total phosphorus), STN (soil total nitrogen), MCP (carbon-to-phosphorus ratio of microbial biomass), and SCN (soil carbon-to-nitrogen ratio) as critical factors affecting bacterial niche width; conversely LCN (litter carbon-to-nitrogen ratio), RCP (ratio of dissolved carbon to phosphorus), MCP, and SCN emerged as key determinants influencing community assembly processes. Furthermore, the PLS-SEM results underscored how both litter characteristics along with soil properties-and their associated alpha diversity-impact variations in niche breadth while also shaping community assembly dynamics overall. This research provides vital insights into understanding synergistic relationships between litter quality, soil characteristics, and microbial community across diverse forest ecosystems.
Collapse
Affiliation(s)
- Kunrun He
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (K.H.); (S.H.); (M.S.); (Y.S.); (C.L.); (J.H.)
| | - Yiran Lai
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (X.W.); (C.Z.); (Y.H.)
| | - Shurui Hu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (K.H.); (S.H.); (M.S.); (Y.S.); (C.L.); (J.H.)
| | - Meiyi Song
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (K.H.); (S.H.); (M.S.); (Y.S.); (C.L.); (J.H.)
| | - Ye Su
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (K.H.); (S.H.); (M.S.); (Y.S.); (C.L.); (J.H.)
| | - Chunyang Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (K.H.); (S.H.); (M.S.); (Y.S.); (C.L.); (J.H.)
| | - Xinle Wu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (X.W.); (C.Z.); (Y.H.)
| | - Chunyue Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (X.W.); (C.Z.); (Y.H.)
| | - Yuanhang Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (X.W.); (C.Z.); (Y.H.)
- Henan Funiu Mountain Biological and Ecological Environment Observatory Research Project, Zhengzhou 450001, China
| | - Jinyong Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (K.H.); (S.H.); (M.S.); (Y.S.); (C.L.); (J.H.)
- Henan Funiu Mountain Biological and Ecological Environment Observatory Research Project, Zhengzhou 450001, China
| | - Shujuan Guo
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (X.W.); (C.Z.); (Y.H.)
- Henan Funiu Mountain Biological and Ecological Environment Observatory Research Project, Zhengzhou 450001, China
| | - Yadong Xu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (X.W.); (C.Z.); (Y.H.)
- Henan Funiu Mountain Biological and Ecological Environment Observatory Research Project, Zhengzhou 450001, China
| |
Collapse
|
7
|
Wang K, Zhao M, Zhang M, Fang X, Wang H, Lv J, Shi F. Topography- and depth-dependent rhizosphere microbial community characteristics drive ecosystem multifunctionality in Juglans mandshurica forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175070. [PMID: 39084382 DOI: 10.1016/j.scitotenv.2024.175070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Rhizosphere microbial community characteristics and ecosystem multifunctionality (EMF), both affected by topographic factors, are closely correlated. However, more targeted exploration is yet required to fully understand the variations of rhizosphere microbial communities along topographic gradients in different soil layers, as well as whether and how they regulate EMF under specific site conditions. Here, we conducted relevant research on Juglans mandshurica forests at six elevation gradients and two slope positions ranging from 310 to 750 m in Tianjin Baxian Mountain. Results demonstrated that rhizosphere soil physicochemical properties and enzyme activities of both layers (0-20 cm and 20-40 cm) varied significantly with elevation, while only at top layer did slope position have significant impacts on most indicators. Bacterial richness and diversity were higher in the top layer at slope bottom and middle-high elevation, the difference in fungi was not as noticeable. Both topographic factors and soil depth significantly impacted microbial community structure, with Candidatus_Udaeobacter of bacteria, Mortierella, Sebacina, and Hygrocybe of fungi mainly contributing to the dissimilarity between communities. EMF rose with increasing elevation, bacteria were more critical drivers of this process than fungi, and topographic factors could affect EMF by altering bacterial diversity and dominant taxa abundance. For evaluating EMF, the aggregate structure of sub layer and the carbon cycle-related indicators of top layer were of higher importance. Our results revealed the depth-dependent characteristics of the rhizosphere microbial community along topographic gradients in studied stands, as well as the pivotal regulatory role of bacteria on EMF, while also highlighting depth as an important variable for analyzing soil properties and EMF. This work helps us better understand the response of individuals and communities of J. mandshurica to changing environmental conditions, further providing a scientific reference for the management and protection of secondary forests locally and in North China.
Collapse
Affiliation(s)
- Kefan Wang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, PR China.
| | - Mingyuan Zhao
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, PR China.
| | - Mei Zhang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, PR China.
| | - Xin Fang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, PR China.
| | - Haomin Wang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, PR China.
| | - Juan Lv
- School of Environmental Science and Engineering, Tiangong University, Binshui West Road 399, Tianjin 300387, PR China.
| | - Fuchen Shi
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, PR China.
| |
Collapse
|
8
|
Rousseau M, Siegenthaler A, Skidmore AK, de Groot GA, Laros I. Further reduction in soil bacterial diversity under severe acidification in European temperate forests. EUROPEAN JOURNAL OF SOIL SCIENCE 2024; 75:e70005. [PMID: 39583947 PMCID: PMC11579971 DOI: 10.1111/ejss.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 11/26/2024]
Abstract
Despite a decrease in industrial nitrogen and sulfur deposition over recent decades, soil acidification remains a persistent challenge to European forest health, especially in regions of intense agriculture and urbanisation. Using topsoil eDNA metabarcoding and functional annotations from a sample of 49 plots (each 30 × 30 m) located in The Netherlands and Germany, we investigated the effect of severe acidification on bacterial taxonomic diversity under different forest types and explored potential functional implications for nutrient cycling. Furthermore, we assessed which soil parameters known to influence soil bacterial communities affect these acidophilic communities. Here, we are the first to demonstrate under natural conditions that soil bacterial diversity in extremely acidic soils (pH <4.5) continues to decline similarly across forest types as pH further decreases under intensifying human activity. Our results confirmed pH as the key driver of soil bacterial communities, even in extremely acidic soils. Ongoing severe acidification continues to reduce bacterial communities, favouring taxa adapted to extreme acidity and primarily involved in recalcitrant carbon-degradation compounds (e.g. cellulolysis potential = 0.78%-9.99%) while simultaneously diminishing taxa associated with nitrogen cycling (e.g. fixation potential = 6.72%-0.00%). Altogether, our findings indicate a further decline in bacterial diversity in already extremely acidic soils, likely disrupting nutrient cycling through changes in immobilisation and mineralisation processes. Our study highlights the continuous acidification of European temperate forests to extremely low pH levels, further disrupting forest ecosystem functioning. The significant reduction in bacterial diversity under such a severe acidification gradient, as demonstrated here, underscores the necessity to include severely acidified forests in conservation programmes and monitoring to prevent further degradation of European soils beyond repair.
Collapse
Affiliation(s)
- Mélody Rousseau
- Natural Resources Department, Faculty of Geo‐Information Science and Earth ObservationUniversity of TwenteEnschedeThe Netherlands
| | - Andjin Siegenthaler
- Natural Resources Department, Faculty of Geo‐Information Science and Earth ObservationUniversity of TwenteEnschedeThe Netherlands
| | - Andrew K. Skidmore
- Natural Resources Department, Faculty of Geo‐Information Science and Earth ObservationUniversity of TwenteEnschedeThe Netherlands
| | - G. Arjen de Groot
- Wageningen Environmental ResearchWageningen University & ResearchWageningenThe Netherlands
| | - Ivo Laros
- Wageningen Environmental ResearchWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
9
|
Fan Z, Wang J, Lv D, Li S, Miao Y, Hu M, Wu D, Liu F, Wang D. Effects of cropland-to-orchard conversion on soil multifunctionality, particularly nitrogen cycling in the eastern Loess Plateau. Front Microbiol 2024; 15:1471329. [PMID: 39512938 PMCID: PMC11540665 DOI: 10.3389/fmicb.2024.1471329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/26/2024] [Indexed: 11/15/2024] Open
Abstract
The conversion of cropland to orchards is one of the main measures of the Grain for Green Program for soil and water conservation and ecosystem function maintenance in the eastern Loess Plateau, China. However, the patterns and influencing forces of soil multifunctionality during the conversion from cropland to orchard remain unclear. This study evaluated the responses and regulating factors of soil multifunctionality following the conversion of cropland to pomegranate (Punica granatum L.) orchard along a 10-year chronosequence. Results showed that the conversion of cropland to pomegranate trees significantly increased the L-leucine aminopeptidase enzyme activity from 4.77 to 17.69 nmol g-1 h-1. The 10-year pomegranate stand exhibited the highest nitrogen (N) cycle multifunctionality. The N cycle multifunctionality was positively correlated with soil dissolved organic carbon (C) content, soil available phosphorus content, microbial biomass C content, phospholipid fatty acid, and soil feature index (All p < 0.05). Structural equation modeling suggested that the increased N cycle multifunctionality was attributed to soil feature index rather than soil microbial C content and phospholipid fatty acid. Land-use change did not affect soil C cycle, phosphorus cycle, or soil multifunctionality. Overall, our findings reveal that cropland conversion to orchards significantly enhances soil N cycle multifunctionality, highlighting the soil feature index's role in maintaining soil function. The conversion from cropland to orchards, which has economic benefits and increases soil N cycle multifunctionality, is an effective approach of the Grain for Green Program in the Loess Plateau.
Collapse
Affiliation(s)
- Zhuanzhuan Fan
- International Joint Research Laboratory of Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, China
| | - Jiali Wang
- International Joint Research Laboratory of Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, China
| | - Dandan Lv
- International Joint Research Laboratory of Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, China
| | - Shangbin Li
- International Joint Research Laboratory of Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, China
| | - Yuan Miao
- International Joint Research Laboratory of Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, China
- Henan Dabieshan National Field Observation and Research Station of Forest Ecosystem, Henan University, Kaifeng, China
| | - Mengjun Hu
- International Joint Research Laboratory of Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, China
| | - Donghui Wu
- School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Fengying Liu
- Laboratory of Resources and Applied Microbiology, School of Life Sciences, Henan University, Kaifeng, China
| | - Dong Wang
- International Joint Research Laboratory of Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, China
- Henan Dabieshan National Field Observation and Research Station of Forest Ecosystem, Henan University, Kaifeng, China
| |
Collapse
|
10
|
Zhu Y, Ma S, Wen Y, Zhao W, Jiang Y, Li M, Zou K. Deciphering assembly processes, network complexity and stability of potential pathogenic communities in two anthropogenic coastal regions of a highly urbanized estuary. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124444. [PMID: 38936795 DOI: 10.1016/j.envpol.2024.124444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/01/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
The existence of potential pathogens may lead to severe water pollution, disease transmission, and the risk of infectious diseases, posing threats to the stability of aquatic ecosystems and human health. In-depth research on the dynamic of potential pathogenic communities is of significant importance, it can provide crucial support for assessing the health status of aquatic ecosystems, maintaining ecological balance, promoting sustainable economic development, and safeguarding human health. Nevertheless, the current understanding of the distribution and geographic patterns of potential pathogens in coastal ecosystems remains rather limited. Here, we investigated the diversity, assembly, and co-occurrence network of potential pathogenic communities in two anthropogenic coastal regions, i.e., the eight mouths (EPR) and nearshore region (NSE), of the Pearl River Estuary (PRE) and a total of 11 potential pathogenic types were detected. The composition and diversity of potential pathogenic communities exhibited noteworthy distinctions between the EPR and NSE, with 6 shared potential pathogenic families. Additionally, in the NSE, a significant pattern of geographic decay was observed, whereas in the EPR, the pattern of geographic decay was not significant. Based on the Stegen null model, it was noted that undominant processes (53.36%/69.24%) and heterogeneous selection (27.35%/25.19%) dominated the assembly of potential pathogenic communities in EPR and NSE. Co-occurrence network analysis showed higher number of nodes, a lower average path length and graph diameter, as well as higher level of negative co-occurrences and modularity in EPR than those in NSE, indicating more complex and stable correlations between potential pathogens in EPR. These findings lay the groundwork for the effective management of potential pathogens, offering essential information for ecosystem conservation and public health considerations in the anthropogenic coastal regions.
Collapse
Affiliation(s)
- Yiyi Zhu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, China
| | - Shanshan Ma
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, China
| | - Yongjing Wen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, China
| | - Wencheng Zhao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, China
| | - Yun Jiang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, China
| | - Min Li
- Key Laboratory for Sustainable Utilization of Open-sea Fishery, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Keshu Zou
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, China.
| |
Collapse
|
11
|
Zhang B, Zhu S, Li J, Fu F, Guo L, Li J, Zhang Y, Liu Y, Chen G, Zhang G. Elevational distribution patterns and drivers factors of fungal community diversity at different soil depths in the Abies georgei var. smithii forests on Sygera Mountains, southeastern Tibet, China. Front Microbiol 2024; 15:1444260. [PMID: 39184024 PMCID: PMC11342059 DOI: 10.3389/fmicb.2024.1444260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction Soil fungal communities play a crucial role in maintaining the ecological functions of alpine forest soil ecosystems. However, it is currently unclear how the distribution patterns of fungal communities in different soil layers of alpine forests will change along the elevational gradients. Material and methods Therefore, Illumina MiSeq sequencing technology was employed to investigate fungal communities in three soil layers (0-10, 10-20, and 20-30 cm) along an elevational gradient (3500 m to 4300 m) at Sygera Mountains, located in Bayi District, Nyingchi City, Tibet. Results and discussion The results indicated that: 1) Soil depth had a greater impact on fungal diversity than elevation, demonstrating a significant reduction in fungal diversity with increased soil depth but showing no significant difference with elevation changes in all soil layers. Within the 0-10 cm soil layer, both Basidiomycota and Ascomycota co-dominate the microbial community. However, as the soil depth increases to 10-20 and 20-30 cm soil layers, the Basidiomycota predominantly dominates. 2) Deterministic processes were dominant in the assembly mechanism of the 0-10 cm fungal community and remained unchanged with increasing elevation. By contrast, the assembly mechanisms of the 10-20 and 20-30 cm fungal communities shifted from deterministic to stochastic processes as elevation increased. 3) The network complexity of the 0-10 cm fungal community gradually increased with elevation, while that of the 10-20 and 20-30 cm fungal communities exhibited a decreasing trend. Compared to the 0-10 cm soil layer, more changes in the relative abundance of fungal biomarkers occurred in the 10-20 and 20-30 cm soil layers, indicating that the fungal communities at these depths are more sensitive to climate changes. Among the key factors driving these alterations, soil temperature and moisture soil water content stood out as pivotal in shaping the assembly mechanisms and network complexity of fungal communities. This study contributes to the understanding of soil fungal community patterns and drivers along elevational gradients in alpine ecosystems and provides important scientific evidence for predicting the functional responses of soil microbial ecosystems in alpine forests.
Collapse
Affiliation(s)
- Bo Zhang
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Sijie Zhu
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Jiangrong Li
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Fangwei Fu
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Liangna Guo
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Jieting Li
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Yibo Zhang
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Yuzhuo Liu
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Ganggang Chen
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Gengxin Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Rui R, Hei J, Li Y, Al Farraj DA, Noor F, Wang S, He X. Effects of humic acid fertilizer on the growth and microbial network stability of Panax notoginseng from the forest understorey. Sci Rep 2024; 14:17816. [PMID: 39090225 PMCID: PMC11294558 DOI: 10.1038/s41598-024-68949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
Humic acid (HA) can substantially enhance plant growth and improve soil health. Currently, the impacts of HA concentrations variation on the development and soil quality of Panax notoginseng (Sanqi) from the forest understorey are still unclear. In this study, exogenous HA was administered to the roots of Sanqi at varying concentrations (2, 4, and 6 ml/L). Subsequently, the diversity and community structure of bacteria and fungi were assessed through high-throughput sequencing technology. The investigation further involved analyzing the interplay among the growth of sanqi, soil edaphic factors, and the microbial network stability. Our finding revealed that moderate concentrations (4 ml/L) of HA improved the fresh/dry weight of Sanqi and NO3--N levels. Compared with control, the moderate concentrations of HA had a notable impact on the bacterial and fungal communities compositions. However, there was no significant difference in the α and β diversity of bacteria and fungi. Moreover, the abundance of beneficial bacteria (Bradyrhizobium) and harmful bacteria (Xanthobacteraceae) increased and decreased at 4 ml/L HA, respectively, while the bacterial and fungal network stability were enhanced. Structural equation model (SEM) revealed that the fresh weight of Sanqi and bacterial and fungal communities were the factors that directly affected the microbial network stability at moderate concentrations of HA. In conclusion, 4 ml/L of HA is beneficial for promoting Sanqi growth and soil quality. Our study provides a reference for increasing the yield of Sanqi and sustainable development of the Sanqi-pine agroforestry system.
Collapse
Affiliation(s)
- Rui Rui
- Key Laboratory of In-forest Resource Protection and Utilization in Yunnan Province, College of Landscape and Horticulture of Southwest, Forestry University, Kunming, 650224, China
| | - Jingying Hei
- Key Laboratory of In-forest Resource Protection and Utilization in Yunnan Province, College of Landscape and Horticulture of Southwest, Forestry University, Kunming, 650224, China
| | - Yue Li
- Key Laboratory of In-forest Resource Protection and Utilization in Yunnan Province, College of Landscape and Horticulture of Southwest, Forestry University, Kunming, 650224, China
| | - Dunia A Al Farraj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, 11451, Riyadh, Saudi Arabia
| | - Faisal Noor
- Key Laboratory of In-forest Resource Protection and Utilization in Yunnan Province, College of Landscape and Horticulture of Southwest, Forestry University, Kunming, 650224, China
| | - Shu Wang
- Key Laboratory of In-forest Resource Protection and Utilization in Yunnan Province, College of Landscape and Horticulture of Southwest, Forestry University, Kunming, 650224, China.
- Key Laboratory of Ministry of Education on Forest Resources Conservation and Utilization in Southwest Mountainous Area, Kunming International Research and Development Center of Ecological Forestry Industry, Kunming, 650233, China.
| | - Xiahong He
- Key Laboratory of Ministry of Education on Forest Resources Conservation and Utilization in Southwest Mountainous Area, Kunming International Research and Development Center of Ecological Forestry Industry, Kunming, 650233, China.
| |
Collapse
|
13
|
Zhang F, Xie Y, Peng R, Ji X, Bai L. Heavy metals and nutrients mediate the distribution of soil microbial community in a typical contaminated farmland of South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174322. [PMID: 38945241 DOI: 10.1016/j.scitotenv.2024.174322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
The effects of heavy metals on soil microbial communities have been extensively investigated, whereas the combined effects of heavy metals and nutrients on soil microbial communities and their interactions are rarely understood. In this study, we investigated the distribution patterns of heavy metals, nutrients and microbial communities in a typical contaminated farmland and explored their interaction mechanisms. The results showed that Cd and Pb were the main pollutants in this area, which mainly came from the smelter. Canonical correspondence analysis and variance decomposition analysis showed that the heavy metals played a more important role in restraining the microbial community structure of soils than other soil properties. Soil Cd, Pb, pH and available K content were the most important environmental factors affecting the microbial community structures in soil. Major Cd tolerant bacteria and fungi were detected including Actinobacteriota, Gemmatimonadota, Entorrhizomycota and Mortierellomycota. The analyses of molecular ecological networks showed that there were 84.1 % of negative correlations among microorganisms. Cd could regulate the abundance of key nodes in Cd-tolerant network modules, and these key nodes could improve the adaptability of the whole module to heavy metals through competition with other microorganisms. This study provides insights into the ecological effects of heavy metals and nutrients on soil microbial communities and will help to develop the bio-remediation technologies for contaminated soils.
Collapse
Affiliation(s)
- Feng Zhang
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Key Laboratory of Agro-Environment in Midstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China
| | - Yunhe Xie
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Key Laboratory of Agro-Environment in Midstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China
| | - Rui Peng
- Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Xionghui Ji
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Key Laboratory of Agro-Environment in Midstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Changsha 410125, China; Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China.
| | - Lianyang Bai
- Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
14
|
Yang J, Ouyang L, Chen S, Zhang C, Zheng J, He S. Amendments affect the community assembly and co-occurrence network of microorganisms in Cd and Pb tailings of the Eucalyptus camaldulensis rhizosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172365. [PMID: 38641118 DOI: 10.1016/j.scitotenv.2024.172365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
Mining tailings containing large amounts of Pb and Cd cause severe regional ecosystem pollution. Soil microorganisms play a regulatory role in the restoration of degraded ecosystems. The remediation of heavy metal-contaminated tailings with amendments and economically valuable Eucalyptus camaldulensis is a research hotspot due to its cost-effectiveness and sustainability. However, the succession and co-occurrence patterns of these microbial communities in this context remain unclear. Tailing samples of five kinds of Cd and Pb were collected in E. camaldulensis restoration models. Physicochemical properties, the proportions of different Cd and Pb forms, microbial community structure, and the co-occurrence network of rhizosphere tailings during different restoration process (organic bacterial manure, organic manure, inorganic fertilizer, bacterial agent) were considered. Organic and organic bacterial manures significantly increased pH, cation exchange capacity, and the proportion of residual Pb. Still, there was a significant decrease in the proportion of reducible Pb. The changes in microbial communities were related to physicochemical properties and the types of amendments. Organic and organic bacterium manures decreased the relative abundance of oligotrophic groups and increased the relative abundance of syntrophic groups. Inorganic fertilizers and bacterial agents decreased the relative abundance of saprophytic fungi. B. subtilis would play a better role in the environment improved by organic manure, increasing the relative abundance of beneficial microorganism and reducing the relative abundance of pathogenic microorganism. pH, cation exchange capacity, and the proportion of different forms of Pb were the main factors affecting the bacterial and fungi variation. All four amendments transformed the main critical groups of the microbial network structure from acidophilus and pathogenic microorganisms to beneficial microorganisms. Heavy metal-resistant microorganisms, stress-resistant microorganisms, beneficial microorganisms that promote nutrient cycling, and copiotrophic groups have become critical to building stable rhizosphere microbial communities. The topological properties and stability of the rhizosphere co-occurrence network were also enhanced. Adding organic and organic bacterium manures combined with E. camaldulensis to repair Cd and Pb tailings improved (1) pH and cation exchange capacity, (2) reduced the biological toxicity of Pb, (3) enhanced the stability of microbial networks, and (4) improved ecological network relationships. These positive changes are conducive to the restoration of the ecological functions of tailings.
Collapse
Affiliation(s)
- Jiaqi Yang
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, State Key Laboratory of Efficient Production of Forest Resources, Zhanjiang 524022, China
| | - Linnan Ouyang
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, State Key Laboratory of Efficient Production of Forest Resources, Zhanjiang 524022, China.
| | - Shaoxiong Chen
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, State Key Laboratory of Efficient Production of Forest Resources, Zhanjiang 524022, China
| | - Cheng Zhang
- Experimental Forest Farm of Qingyuan County,Qingyuan 323800, China
| | - Jiaqi Zheng
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, State Key Laboratory of Efficient Production of Forest Resources, Zhanjiang 524022, China
| | - Shae He
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, State Key Laboratory of Efficient Production of Forest Resources, Zhanjiang 524022, China
| |
Collapse
|
15
|
Hu Y, Zhang H, Sun X, Zhang B, Wang Y, Rafiq A, Jia H, Liang C, An S. Impact of grassland degradation on soil multifunctionality: Linking to protozoan network complexity and stability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172724. [PMID: 38663601 DOI: 10.1016/j.scitotenv.2024.172724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Soil protozoa, as predators of microbial communities, profoundly influence multifunctionality of soils. Understanding the relationship between soil protozoa and soil multifunctionality (SMF) is crucial to unraveling the driving mechanisms of SMF. However, this relationship remains unclear, particularly in grassland ecosystems that are experiencing degradation. By employing 18S rRNA gene sequencing and network analysis, we examined the diversity, composition, and network patterns of the soil protozoan community along a well-characterized gradient of grassland degradation at four alpine sites, including two alpine meadows (Cuona and Jiuzhi) and two alpine steppes (Shuanghu and Gonghe) on the Qinghai-Tibetan Plateau. Our findings showed that grassland degradation decreased SMF for 1-2 times in all four sites but increased soil protozoan diversity (Shannon index) for 13.82-298.01 % in alpine steppes. Grassland degradation-induced changes in soil protozoan composition, particularly to the Intramacronucleata with a large body size, were consistently observed across all four sites. The enhancing network complexity (average degree), stability (robustness), and cooperative relationships (positive correlation) are the responses of protozoa to grassland degradation. Further analyses revealed that the increased network complexity and stability led to a decrease in SMF by affecting microbial biomass. Overall, protozoa increase their diversity and strengthen their cooperative relationships to resist grassland degradation, and emphasize the critical role of protozoan network complexity and stability in regulating SMF. Therefore, not only protozoan diversity and composition but also their interactions should be considered in evaluating SMF responses to grassland degradation, which has important implications for predicting changes in soil function under future scenarios of anthropogenic change.
Collapse
Affiliation(s)
- Yang Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
| | - Haolin Zhang
- State Key Laboratory of Soil Erosion and Dry Land Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Xinya Sun
- State Key Laboratory of Soil Erosion and Dry Land Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Bicheng Zhang
- Institute of Soil and Water Conservation, CAS & MWR, Yangling, Shannxi 712100, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Yubin Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Anum Rafiq
- State Key Laboratory of Soil Erosion and Dry Land Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Hongtao Jia
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
| | - Chao Liang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Shaoshan An
- State Key Laboratory of Soil Erosion and Dry Land Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
16
|
Zheng J, Arif M, Li L, He X, Wu Y, Cao W, Yan P, Li C. Dam inundation reduces ecosystem multifunctionality following riparian afforestation in the Three Gorges Reservoir Region. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121188. [PMID: 38759556 DOI: 10.1016/j.jenvman.2024.121188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Afforestation is an acknowledged method for rehabilitating deteriorated riparian ecosystems, presenting multiple functions to alleviate the repercussions of river damming and climate change. However, how ecosystem multifunctionality (EMF) responds to inundation in riparian afforestation ecosystems remains relatively unexplored. Thus, this article aimed to disclose how EMF alters with varying inundation intensities and to elucidate the key drivers of this variation based on riparian reforestation experiments in the Three Gorges Reservoir Region in China. Our EMF analysis encompassed wood production, carbon storage, nutrient cycling, decomposition, and water regulation under different inundation intensities. We examined their correlation with soil properties and microbial diversity. The results indicated a substantial reduction in EMF with heightened inundation intensity, which was primarily due to the decline in most individual functions. Notably, soil bacterial diversity (23.02%), soil properties such as oxidation-reduction potential (ORP, 11.75%), and temperature (5.85%) emerged as pivotal variables elucidating EMF changes under varying inundation intensities. Soil bacterial diversity and ORP declined as inundation intensified but were positively associated with EMF. In contrast, soil temperature rose with increased inundation intensity and exhibited a negative correlation with EMF. Further insights gleaned from structural equation modeling revealed that inundation reduced EMF directly and indirectly by reducing soil ORP and bacterial diversity and increasing soil temperature. This work underscores the adverse effects of dam inundation on riparian EMF and the crucial role soil characteristics and microbial diversity play in mediating EMF in response to inundation. These insights are pivotal for the conservation of biodiversity and functioning following afforestation in dam-induced riparian habitats.
Collapse
Affiliation(s)
- Jie Zheng
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China; Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing, 400715, China.
| | - Muhammad Arif
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China; Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing, 400715, China.
| | - Lijuan Li
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Xinrui He
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Yuanyuan Wu
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Wenqiu Cao
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Peixuan Yan
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Changxiao Li
- Key Laboratory of Eco-environments in the Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China; Biological Science Research Center, Academy for Advanced Interdisciplinary Studies, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
17
|
Qiu T, Peñuelas J, Chen Y, Sardans J, Yu J, Xu Z, Cui Q, Liu J, Cui Y, Zhao S, Chen J, Wang Y, Fang L. Arbuscular mycorrhizal fungal interactions bridge the support of root-associated microbiota for slope multifunctionality in an erosion-prone ecosystem. IMETA 2024; 3:e187. [PMID: 38898982 PMCID: PMC11183171 DOI: 10.1002/imt2.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 06/21/2024]
Abstract
The role of diverse soil microbiota in restoring erosion-induced degraded lands is well recognized. Yet, the facilitative interactions among symbiotic arbuscular mycorrhizal (AM) fungi, rhizobia, and heterotrophic bacteria, which underpin multiple functions in eroded ecosystems, remain unclear. Here, we utilized quantitative microbiota profiling and ecological network analyses to explore the interplay between the diversity and biotic associations of root-associated microbiota and multifunctionality across an eroded slope of a Robinia pseudoacacia plantation on the Loess Plateau. We found explicit variations in slope multifunctionality across different slope positions, associated with shifts in limiting resources, including soil phosphorus (P) and moisture. To cope with P limitation, AM fungi were recruited by R. pseudoacacia, assuming pivotal roles as keystones and connectors within cross-kingdom networks. Furthermore, AM fungi facilitated the assembly and composition of bacterial and rhizobial communities, collectively driving slope multifunctionality. The symbiotic association among R. pseudoacacia, AM fungi, and rhizobia promoted slope multifunctionality through enhanced decomposition of recalcitrant compounds, improved P mineralization potential, and optimized microbial metabolism. Overall, our findings highlight the crucial role of AM fungal-centered microbiota associated with R. pseudoacacia in functional delivery within eroded landscapes, providing valuable insights for the sustainable restoration of degraded ecosystems in erosion-prone regions.
Collapse
Affiliation(s)
- Tianyi Qiu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess PlateauNorthwest A&F UniversityYanglingChina
- College of Natural Resources and EnvironmentNorthwest A&F UniversityYanglingChina
- Key Laboratory of Green Utilization of Critical Non‐metallic Mineral Resources, Ministry of EducationWuhan University of TechnologyWuhanChina
| | - Josep Peñuelas
- Consejo Superior de Investigaciones CientíficasGlobal Ecology Unit Centre de Recerca Ecològica i Aplicacions Forestals‐Consejo Superior de Investigaciones Científicas‐Universitat Autònoma de BarcelonaBellaterraSpain
- Centre de Recerca Ecològica i Aplicacions ForestalsCerdanyola del VallèsCataloniaSpain
| | - Yinglong Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess PlateauNorthwest A&F UniversityYanglingChina
- College of Natural Resources and EnvironmentNorthwest A&F UniversityYanglingChina
- School of Agriculture and Environment, Institute of AgricultureThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Jordi Sardans
- Consejo Superior de Investigaciones CientíficasGlobal Ecology Unit Centre de Recerca Ecològica i Aplicacions Forestals‐Consejo Superior de Investigaciones Científicas‐Universitat Autònoma de BarcelonaBellaterraSpain
- Centre de Recerca Ecològica i Aplicacions ForestalsCerdanyola del VallèsCataloniaSpain
| | - Jialuo Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
| | - Zhiyuan Xu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess PlateauNorthwest A&F UniversityYanglingChina
- College of Natural Resources and EnvironmentNorthwest A&F UniversityYanglingChina
| | - Qingliang Cui
- Institute of Soil and Water ConservationChinese Academy of Sciences and Ministry of Water ResourcesYanglingChina
| | - Ji Liu
- Hubei Province Key Laboratory for Geographical Process Analysis and SimulationCentral China Normal UniversityWuhanChina
| | - Yongxing Cui
- Institute of BiologyFreie Universität BerlinBerlinGermany
| | - Shuling Zhao
- Institute of Soil and Water ConservationChinese Academy of Sciences and Ministry of Water ResourcesYanglingChina
| | - Jing Chen
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yunqiang Wang
- Chinese Academy of Sciences Center for Excellence in Quaternary Science and Global ChangeChinese Academy of SciencesXi'anChina
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess PlateauNorthwest A&F UniversityYanglingChina
- Key Laboratory of Green Utilization of Critical Non‐metallic Mineral Resources, Ministry of EducationWuhan University of TechnologyWuhanChina
- Institute of Soil and Water ConservationChinese Academy of Sciences and Ministry of Water ResourcesYanglingChina
- Chinese Academy of Sciences Center for Excellence in Quaternary Science and Global ChangeChinese Academy of SciencesXi'anChina
| |
Collapse
|
18
|
Yang X, Song W, Yang X, Yang T, Bao W, Wang C, Li J, Zhong S, Jiang Q, Li LJ, Sun W. Microbial network structure, not plant and microbial community diversity, regulates multifunctionality under increased precipitation in a cold steppe. Front Microbiol 2024; 14:1349747. [PMID: 38282737 PMCID: PMC10814129 DOI: 10.3389/fmicb.2023.1349747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
It is known that the dynamics of multiple ecosystem functions (i. e., multifunctionality) are positively associated with microbial diversity and/or biodiversity. However, how the relationship between microbial species affects ecosystem multifunctionality remains unclear, especially in the case of changes in precipitation patterns. To explore the contribution of biodiversity and microbial co-occurrence networks to multifunctionality, we used rainfall shelters to simulate precipitation enhancement in a cold steppe in Northeast China over two consecutive growing seasons. We showed that an increased 50% precipitation profoundly reduced bacterial diversity and multidiversity, while inter-annual differences in precipitation did not shift microbial diversity, plant diversity, or multidiversity. Our analyses also revealed that increased annual precipitation significantly increased ecosystem, soil, nitrogen, and phosphorous cycle multifunctionality. Neither increased precipitation nor inter-annual differences in precipitation had a significant effect on carbon cycle multifunctionality, probably due to the relatively short period (2 years) of our experiment. The co-occurrence network of bacterial and fungal communities was the most dominant factor affecting multifunctionality, the numbers of negative interactions but not positive interactions were linked to multifunctionality. In particular, our results provided evidence that microbial network topological features are crucial for maintaining ecosystem functions in grassland ecosystems, which should be considered in related studies to accurately predict the responses of ecosystem multifunctionality to predicted changes in precipitation patterns.
Collapse
Affiliation(s)
- Xuechen Yang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Wenzheng Song
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Xue Yang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
- School of Civil Engineering and Transportation, Northeast Forestry University, Harbin, China
| | - Tianxue Yang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Wenqing Bao
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Chengliang Wang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Junqin Li
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Shangzhi Zhong
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Qi Jiang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
- No. Fifteen Senior High School of Mudanjiang, Mudanjiang, China
| | - Lu-Jun Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Wei Sun
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| |
Collapse
|
19
|
Fu F, Li Y, Zhang B, Zhu S, Guo L, Li J, Zhang Y, Li J. Differences in soil microbial community structure and assembly processes under warming and cooling conditions in an alpine forest ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167809. [PMID: 37863238 DOI: 10.1016/j.scitotenv.2023.167809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
Global climate change affects the soil microbial community assemblages of many ecosystems. However, little is known about the effects of climate warming on the structure of soil microbial communities or the underlying mechanisms that influence microbial community composition in alpine forest ecosystems. Thus, our ability to predict the future consequences of climate change is limited. In this study, with the use of PVC pipes, the in situ soils of the rush-tip long-bud Abies georgei var. smithii forest at 3500 and 4300 m above sea level (MASL) of the Sygera Mountains were incubated in pairs for 1 year to simulate climate cooling and warming. This shift corresponds to a change in soil temperature of ±4.7 °C. Findings showed that climate warming increased the complexity of bacterial networks but decreased the complexity of fungal networks. Climate cooling also increased the complexity of bacterial networks. However, in fungal communities, climate cooling increased the number of nodes but decreased the total number of edges. Stochastic processes acted as the drivers of bacterial community composition, with climate warming leading the shift from deterministic to stochastic drivers. Fungal communities were more sensitive to climate change than bacterial communities, with soil temperature (ST) and soil water content (SWC) acting as the main drivers of change. By contrast, soil bacterial communities were more closely related to soil conditions than fungal communities and remained stable after a year of soil transplantation. In conclusion, fungi and bacteria had different response patterns, and their responses to climate cooling and warming were asymmetric. This work is expected to contribute to our understanding of the response to climate change of soil microbial communities in alpine forests and our prediction of the functions of soil microbial ecosystems in alpine forests.
Collapse
Affiliation(s)
- Fangwei Fu
- Research Institute of Tibet Plateau Ecology, Tibet Agricultureal & Animal Husbandry University, Nyingchi, Tibet 860000, China; Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet 860000, China; National Key Station of Field Scientific Observation & Experiment, Nyingchi, Tibet 860000, China; Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet 860000, China
| | - Yueyao Li
- Research Institute of Tibet Plateau Ecology, Tibet Agricultureal & Animal Husbandry University, Nyingchi, Tibet 860000, China; Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet 860000, China; National Key Station of Field Scientific Observation & Experiment, Nyingchi, Tibet 860000, China; Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet 860000, China
| | - Bo Zhang
- Research Institute of Tibet Plateau Ecology, Tibet Agricultureal & Animal Husbandry University, Nyingchi, Tibet 860000, China; Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet 860000, China; National Key Station of Field Scientific Observation & Experiment, Nyingchi, Tibet 860000, China; Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet 860000, China
| | - Sijie Zhu
- Research Institute of Tibet Plateau Ecology, Tibet Agricultureal & Animal Husbandry University, Nyingchi, Tibet 860000, China; Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet 860000, China; National Key Station of Field Scientific Observation & Experiment, Nyingchi, Tibet 860000, China; Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet 860000, China
| | - Liangna Guo
- Research Institute of Tibet Plateau Ecology, Tibet Agricultureal & Animal Husbandry University, Nyingchi, Tibet 860000, China; Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet 860000, China; National Key Station of Field Scientific Observation & Experiment, Nyingchi, Tibet 860000, China; Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet 860000, China
| | - Jieting Li
- Research Institute of Tibet Plateau Ecology, Tibet Agricultureal & Animal Husbandry University, Nyingchi, Tibet 860000, China; Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet 860000, China; National Key Station of Field Scientific Observation & Experiment, Nyingchi, Tibet 860000, China; Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet 860000, China
| | - Yibo Zhang
- Research Institute of Tibet Plateau Ecology, Tibet Agricultureal & Animal Husbandry University, Nyingchi, Tibet 860000, China; Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet 860000, China; National Key Station of Field Scientific Observation & Experiment, Nyingchi, Tibet 860000, China; Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet 860000, China
| | - Jiangrong Li
- Research Institute of Tibet Plateau Ecology, Tibet Agricultureal & Animal Husbandry University, Nyingchi, Tibet 860000, China; Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet 860000, China; National Key Station of Field Scientific Observation & Experiment, Nyingchi, Tibet 860000, China; Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, Tibet 860000, China; State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
20
|
He H, Zhou J, Wang Y, Jiao S, Qian X, Liu Y, Liu J, Chen J, Delgado-Baquerizo M, Brangarí AC, Chen L, Cui Y, Pan H, Tian R, Liang Y, Tan W, Ochoa-Hueso R, Fang L. Deciphering microbiomes dozens of meters under our feet and their edaphoclimatic and spatial drivers. GLOBAL CHANGE BIOLOGY 2024; 30:e17028. [PMID: 37955302 DOI: 10.1111/gcb.17028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023]
Abstract
Microbes inhabiting deep soil layers are known to be different from their counterpart in topsoil yet remain under investigation in terms of their structure, function, and how their diversity is shaped. The microbiome of deep soils (>1 m) is expected to be relatively stable and highly independent from climatic conditions. Much less is known, however, on how these microbial communities vary along climate gradients. Here, we used amplicon sequencing to investigate bacteria, archaea, and fungi along fifteen 18-m depth profiles at 20-50-cm intervals across contrasting aridity conditions in semi-arid forest ecosystems of China's Loess Plateau. Our results showed that bacterial and fungal α diversity and bacterial and archaeal community similarity declined dramatically in topsoil and remained relatively stable in deep soil. Nevertheless, deep soil microbiome still showed the functional potential of N cycling, plant-derived organic matter degradation, resource exchange, and water coordination. The deep soil microbiome had closer taxa-taxa and bacteria-fungi associations and more influence of dispersal limitation than topsoil microbiome. Geographic distance was more influential in deep soil bacteria and archaea than in topsoil. We further showed that aridity was negatively correlated with deep-soil archaeal and fungal richness, archaeal community similarity, relative abundance of plant saprotroph, and bacteria-fungi associations, but increased the relative abundance of aerobic ammonia oxidation, manganese oxidation, and arbuscular mycorrhizal in the deep soils. Root depth, complexity, soil volumetric moisture, and clay play bridging roles in the indirect effects of aridity on microbes in deep soils. Our work indicates that, even microbial communities and nutrient cycling in deep soil are susceptible to changes in water availability, with consequences for understanding the sustainability of dryland ecosystems and the whole-soil in response to aridification. Moreover, we propose that neglecting soil depth may underestimate the role of soil moisture in dryland ecosystems under future climate scenarios.
Collapse
Affiliation(s)
- Haoran He
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
| | - Jingxiong Zhou
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Yunqiang Wang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
- Department of Earth and Environmental Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shuo Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xun Qian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Yurong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Ji Liu
- Hubei Province Key Laboratory for Geographical Process Analysis and Simulation, Central China Normal University, Wuhan, China
| | - Ji Chen
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
- Department of Agroecology, Aarhus University, Tjele, Denmark
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
| | - Albert C Brangarí
- Institute for Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongxing Cui
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Haibo Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Renmao Tian
- Institute for Food Safety and Health (IFSH), Illinois Institute of Technology, Bedford Park, Illinois, USA
| | - Yuting Liang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Raúl Ochoa-Hueso
- Department of Biology, IVAGRO, University of Cádiz, Campus de Excelencia Internacional Agroalimentario (CeiA3), Campus del Rio San Pedro, Cádiz, Spain
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
21
|
Chen X, Li Q, Chen D, Zhao L, Xiao C. Restoration Measures of Fencing after Tilling Guided Succession of Grassland Soil Microbial Community Structure to Natural Grassland in the Sanjiangyuan Agro-pasture Ecotone of the Qinghai-Tibetan Plateau. MICROBIAL ECOLOGY 2023; 86:2870-2881. [PMID: 37620628 DOI: 10.1007/s00248-023-02287-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
In the fragile Sanjiangyuan (SJY) agro-pasture ecotone of the Qinghai-Tibetan Plateau (QTP), planting and fencing have been used to alleviate grassland degradation and to provide high-quality grass seeds for the implementation of the project of "grain for green". The soil microbe is the major driving factor in maintaining plant productivity and soil nutrient cycling. However, few studies have explored the effects of planting and fencing on soil microorganisms in the SJY agro-pasture ecotone. We explored the effects of tilling (TG) and fencing after tilling (FTG) on soil microbial communities to reveal the effects of restoration measures on soil microbes and to provide a reference in assessing and improving ecosystem structure. The results showed that restoration measures increased soil microbial species diversity and significantly changed their community structure. We found, the microbial composition was more complex under FTG, and its fungal variability was higher and more similar to that of natural grassland. Additionally, restoration measures resulted in fungal co-occurrence network was more edges, higher density, larger diameter and more positive interactions. This was due to the management of the vegetation-soil microenvironment by FTG inducing a differentiation of microbial community structure. In summary, the implementation of FTG could change the microenvironment in the SJY agro-pasture ecotone, so that variation in the structure of microbial community tended toward that of natural grassland, and increased the stability of microbial co-occurrence network, which was more obvious in the fungal community. HIGHLIGHTS: • Restoration measures have changed the vegetation characteristics and soil microenvironment. • Fencing after tilling (FTG) has brought the microenvironment closer to natural grassland. • FTG significantly increased microbial unique ASVs. The number of fungal unique ASVs was similar to that of natural grassland. • FTG resulted in changes in microbial community structure towards natural grasslands and increased the stability of the microbial co-occurrence network, which was more apparent in the fungal community.
Collapse
Affiliation(s)
- Xin Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Qi Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
| | - Dongdong Chen
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
| | - Liang Zhao
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China.
| | - Chunwang Xiao
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|