1
|
Tu X, Struik PC, Sun S, Wenbo Z, Zhang Y, Jin K, Wang Z. Responses of fungal communities at different soil depths to grazing intensity in a desert steppe. PeerJ 2025; 13:e18791. [PMID: 39790457 PMCID: PMC11716020 DOI: 10.7717/peerj.18791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025] Open
Abstract
Grazing can alter the physicochemical properties of soil and quickly influence the composition of microbial communities. However, the effects of grazing intensity on fungal community composition in different soil depth remain unclear. On the Inner Mongolia Plateau, we studied the effects of grazing intensity treatments including no grazing (NG), light grazing (LG), moderate grazing (MG), heavy grazing (HG), and over grazing (OG) on the physicochemical properties and fungal community composition of surface (0-20 cm) and subsurface (20-40 cm) soil layers. The α-diversity of fungi in subsurface soil decreased under the influence of grazing. The relative abundance of Ascomycota in the subsoil was higher than that in the topsoil, while the situation of Basidiomycota was the opposite. This was caused by the differences in the soil carbon (C) environment for the growth of oligotrophic and copiotrophic fungi. In the subsoil, grazing affected nutrient contents such as soil organic matter (SOM) and total nitrogen (TN), resulting in significantly lower relative abundance of Ortierellomycota under LG, HG, and OG than in the NG. HG showed much higher relative abundance of Glomeromycota. Results of a multiple regression tree (MRT) analysis revealed that TN and nitrate nitrogen affected the fungal α-diversity in top- and subsoils, respectively; the main driving factor regulating fungal community changes was soil water content (SWC) in the topsoil, while it was ammonium nitrogen and nitrate nitrogen in the subsoil. The results of our study indicate that grazing changes the soil environment by changing TN, SWC, nitrate nitrogen, ammonium nitrogen, and affects the diversity and community structure of soil fungi. This provides empirical support for coping with the impact of grazing on soil microbiomes in desert steppes.
Collapse
Affiliation(s)
- Xiangjian Tu
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Deltar, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, Inner Mongolia, China
| | - Paul C. Struik
- Department of Plant Sciences, Centre for Crop Systems Analysis, Wageningen University and Research, Wageningen, Provincie Gelderland, Netherlands
| | - Shixian Sun
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, Inner Mongolia, China
| | - Zhang Wenbo
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, Inner Mongolia, China
| | - Yong Zhang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, Inner Mongolia, China
| | - Ke Jin
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, Inner Mongolia, China
| | - Zhen Wang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, Inner Mongolia, China
- Key Laboratory of Grassland Ecology and Restoration, Ministry of Agriculture, Hohhot, Inner Mongolia, China
| |
Collapse
|
2
|
Gong J, Song L, Zhang Z, Dong J, Zhang S, Zhang W, Dong X, Hu Y, Liu Y. Correlations between root phosphorus acquisition and foliar phosphorus allocation reveal how grazing promotes plant phosphorus utilization. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108467. [PMID: 38412704 DOI: 10.1016/j.plaphy.2024.108467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 02/29/2024]
Abstract
Overgrazing and phosphorus (P) deficiency are two major factors limiting the sustainable development of grassland ecosystems. Exploring plant P utilization and acquisition strategies under grazing can provide a solid basis for determining a reasonable grazing intensity. Both foliar P allocation and root P acquisition are crucial mechanisms for plants to adapt to environmental P availability; however, their changing characteristics and correlation under grazing remain unknown. Here, we investigated foliar P fractions, root P-acquisition traits and gene expression, as well as rhizosphere and bulk soil properties of two dominant plant species, Leymus chinensis (a rhizomatous grass) and Stipa grandis (a bunchgrass), in a field grazing intensity gradient site in Inner Mongolia. Grazing induced different degrees of compensatory growth in the two dominant plant species, increased rhizosphere P availability, and alleviated plant P limitation. Under grazing, the foliar metabolite P of L. chinensis increased, whereas the nucleic acid P of S. grandis increased. Increased P fractions in L. chinensis were positively correlated with increased root exudates and rapid inorganic P absorption. For S. grandis, increased foliar P fractions were positively correlated with more fine roots, more root exudates, and up-regulated expression of genes involved in defense and P metabolism. Overall, efficient root P mobilization and uptake traits, as well as increases in leaf metabolic activity-related P fractions, supported plant compensatory growth under grazing, a process that differed between tiller types. The highest plant productivity and leaf metabolic activity-related P concentrations under medium grazing intensity clarify the underlying basis for sustainable livestock production.
Collapse
Affiliation(s)
- Jirui Gong
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Liangyuan Song
- Institute of Land and Urban-Rural Development, Zhejiang University of Finance & Economics, Hangzhou, 310018, China.
| | - Zihe Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Jiaojiao Dong
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Siqi Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Weiyuan Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Xuede Dong
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Yuxia Hu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Yingying Liu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|