1
|
Zhu L, Xu D, Wang Q. Fabrication of poly(vinyl alcohol)/sulfonated itaconic starch blend film with enhanced antibacterial performance and soil absorption capacity for environment-friendly packaging. Carbohydr Polym 2025; 357:123489. [PMID: 40159008 DOI: 10.1016/j.carbpol.2025.123489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/01/2025] [Accepted: 03/07/2025] [Indexed: 04/02/2025]
Abstract
Plastic packaging is widely used due to its light weight, ease of processing, and cost-effectiveness, but improper disposal causes environmental pollution and resource waste. Developing environment-friendly packaging materials is urgent. Herein, a water-soluble poly(vinyl alcohol) (PVA)/starch blend film was proposed by combining modification and thermal processing, and its performance was evaluated. Starch was modified via a three-step process-acid hydrolysis, itaconic anhydride esterification, and sodium bisulfite sulfonation-to produce sulfonated itaconic starch. The introduction of carboxyl and sulfonic groups improved the hydrophilicity of PVA/starch blends. The water contact angle of the modified blend film was notably decreased in comparison to that unmodified one. The blend films also demonstrated an enhancement in UV shielding properties, effectively reducing rhodamine B photodegradation under extended UV exposure. Besides, the incorporated groups improved the antibacterial performance of the blend film, exhibiting the efficient enhancement on the antibacterial effects on both E. coli and S. aureus. Moreover, the film exhibited the good soil absorption capacity, dissolving completely in soil within 12 h, highlighting its potential for environment-friendly food packaging applications.
Collapse
Affiliation(s)
- Longji Zhu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Dawei Xu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China; Tianfu Yongxing Laboratory, Chengdu 610213, China.
| | - Qi Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China; Tianfu Yongxing Laboratory, Chengdu 610213, China
| |
Collapse
|
2
|
Dasmahapatra AK, Chatterjee J, Tchounwou PB. A systematic review of the effects of nanoplastics on fish. FRONTIERS IN TOXICOLOGY 2025; 7:1530209. [PMID: 40521127 PMCID: PMC12163001 DOI: 10.3389/ftox.2025.1530209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/24/2025] [Indexed: 06/18/2025] Open
Abstract
The global concern about plastics has been amplified due to their widespread contamination in the environment and their ability to cross biological barriers in living organisms. However, our understanding of their bioaccumulation, toxicity, and interaction with other environmental pollutants remains limited. Plastics are classified into three categories: macro-(MAP > 5 mm), micro-(MIP, <5 mm), and nanoplastics (NAP≤ 100 nm). Among these, NAPs have superior sorption capacity, a large surface area, and a greater ability to release co-contaminants into tissues, resulting in more complex and harmful effects compared to MAPs and MIPs. To assess the toxic effects of NAPs, particularly their genotoxicity in fish, we carried out a bibliographic search in PubMed using the search terms "nanoplastics" and "fish," which yielded 233 articles. These studies focused on various polymers including polyamide (PA), polycarbonate (PC), polyethylene (PE), polyethylene terephthalate (PET), polymethylmethacrylate (PMMA), polypropylene (PPP), polystyrene (PS), and polyvinyl chloride (PVC). We further refined our search by including fish species such as common carp, fathead minnows, medaka, tilapia, trout, and zebrafish and selected 114 articles for review. This article provides a comprehensive overview of the current state of knowledge on the effects of NAPs on fishes, emphasizing their interaction with co-contaminants including metals, polycyclic aromatic hydrocarbons, pharmaceuticals, pesticides, antibiotics, plastic additives, and endocrine disruptors found in the aquatic environments. Our findings indicate that among fish species, zebrafish (∼68%) is the most frequently studied, while PS (∼89%) is the most commonly encountered NAP in the aquatic ecosystems. Despite substantial experimental variability, our systematic review highlights that NAPs accumulate in various tissues of fish including the skin, muscle, gill, gut, liver, heart, gonads, and brain across all developmental stages, from embryos to adults. NAP exposure leads to significant adverse effects including increased oxidative stress, decreased locomotor and foraging activities, altered growth, immunity, lipid metabolism, and induced neurotoxicity. Furthermore, NAP exposure modulates estrogen-androgen-thyroid-steroidogenesis (EATS) pathways and shows potential intergenerational effects. Although the USEPA and EU are aware of the global impacts of plastic pollution, the prolonged persistence of plastics continues to pose a significant risk to both aquatic life and human health.
Collapse
Affiliation(s)
- Asok K. Dasmahapatra
- Department of BioMolecular Science, Environmental Toxicology Division, University of Mississippi, Oxford, MS, United States
| | - Joydeep Chatterjee
- Department of Biology, University of Texas-Arlington, Arlington, TX, United States
| | - Paul B. Tchounwou
- RCMI Center for Urban Health Disparities Research and Innovation, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD, United States
| |
Collapse
|
3
|
Wu T, He J, Ye Z, Xia J, Chen M, Chen S, Liu K, Xing P, Yang J, Qian Y, Wang D. Aged Biodegradable Nanoplastics Enhance Body Accumulation Associated with Worse Neuronal Damage in Caenorhabditis elegans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4352-4363. [PMID: 40065691 DOI: 10.1021/acs.est.4c13250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
The environmental and health challenges posed by petroleum-based biodegradable plastics, such as polybutylene succinate (PBS) and polybutyleneadipate-co-terephthalate (PBAT), are a significant concern because they are increasingly present in the environment and contribute a substantial proportion of microplastics (MPs) or nanoplastics (NPs). In this study, ultraviolet (UV)-aged PBS-NPs and PBAT-NPs are found to have a higher propensity to accumulate within the body of Caenorhabditis elegans (C. elegans) by prolonging the defecation interval, which could induce severe neuronal damage compared to pristine NPs. The increased accumulation of biodegradable nanoplastics (BNPs) and subsequent impairments of neurobehavior are highly attributed to their reduced particle size and altered surface properties, including changed chemical bonds and functional groups after photoaging. Aged BNPs also cause more severe damage to GABAergic neurons and neurotransmitter receptors, resulting in disrupted neuronal homeostasis and behaviors. Overall, BNPs of both PBS and PBAT components show no significant differences in biological accumulation and mechanisms of neural damage, highlighting the commonalities and characteristics of the adverse effects of petroleum-based BNPs on the nervous system. Our study opens up the exploration of the health impacts of photoaging and the degradation state of BNPs that are increasingly present in the environment.
Collapse
Affiliation(s)
- Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, China
| | - Jing He
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, China
| | - Zongjian Ye
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, China
| | - Jieyi Xia
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, China
| | - Min Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, China
- Yancheng Kindergarten Teachers College, Yancheng 224005, China
| | - Siyuan Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, China
| | - Kehan Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, China
| | - Pengcheng Xing
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, China
| | - Jiafu Yang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, China
| | - Yijing Qian
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
4
|
Beggel S, Kalis EJJ, Geist J. Towards harmonized ecotoxicological effect assessment of micro- and nanoplastics in aquatic systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125504. [PMID: 39662584 DOI: 10.1016/j.envpol.2024.125504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Micro- and nanoplastics are globally important environmental pollutants. Although research in this field is continuously improving, there are a number of uncertainties, inconsistencies and methodological challenges in the effect assessment of micro- and nanoparticles in freshwater systems. The current understanding of adverse effects is partly biased by the use of non-relevant particle types, unsuitable test setups and environmentally unrealistic dose metrics, which does not take into account realistic processes in particle uptake and consequent effects. Here we summarize the current state of the art by compiling the most recent research with the aim to highlight research gaps and further necessary steps towards more harmonized testing systems. In particular, ecotoxicological scenarios need to mirror environmentally realistic particle diversity and bioavailability. Harmonized test setups should include different uptake pathways, exposures and comparisons with natural reference particles. Effect assessments need to differentiate direct physical particle effects, such as lesions and toxicity caused by the polymer, from indirect effects, such as alterations of ambient environmental conditions by leaching, change of turbidity, food dilution and organisms' behavior. Implementation of these suggestions can contribute to harmonization and more effective, evidence-based assessments of the ecotoxicological effects of micro- and nanoplastics.
Collapse
Affiliation(s)
- Sebastian Beggel
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, Mühlenweg 22, 85354, Freising, Germany
| | - Erwin J J Kalis
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, Mühlenweg 22, 85354, Freising, Germany
| | - Juergen Geist
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, Mühlenweg 22, 85354, Freising, Germany.
| |
Collapse
|
5
|
Ali W, Jeong H, Kim DH, Lee JS, Zinck P, Souissi S, Lee JS. Adverse effects of environmentally relevant microplastics on in vivo endpoints, oxidative stress, and mitogen-activated protein kinase signaling pathway and multixenobiotic resistance system in the marine rotifer Brachionus plicatilis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178027. [PMID: 39700983 DOI: 10.1016/j.scitotenv.2024.178027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
This study compared the toxicological effects of environmentally relevant microplastics (MPs) on the marine rotifer Brachionus plicatilis, focusing on MPs derived from various sources, including fossil fuel-based low-density polyethylene, bio-based polylactic acid (PLA), biodegradable poly(butylene adipate-co-terephthalate), and a novel PLA modified with β-cyclodextrin. We assessed in vivo effects such as reproductive output and mortality, alongside in vitro oxidative stress responses, including oxidative stress, antioxidant enzyme activities, and activation of the mitogen-activated protein kinase (MAPK) signaling pathway and the multixenobiotic resistance (MXR) system. Reproductive output and lifespan reduced significantly across all MP types, ranging from 0.5 to 10 mg L-1, indicating compromised reproductive fitness and life maintenance. At an environmentally relevant concentration of 0.5 mg L-1, in vitro assessments revealed differential modulation of reactive oxygen species levels and antioxidant enzyme activities, contingent upon the specific MP type. Moreover, MAPK signaling pathway and MXR assays showed changes in phosphorylation and detoxification proteins depending on the type of MPs. This study highlights the ecological risks that various MPs, including bio-based, biodegradable, and petrochemical-based MPs, could pose in marine environments.
Collapse
Affiliation(s)
- Wajid Ali
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR-8187-LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000 Lille, France; Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Haksoo Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jin-Sol Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Philippe Zinck
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France.
| | - Sami Souissi
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR-8187-LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000 Lille, France; Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan; Operation Center for Enterprise Academia Networking, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
6
|
Laranjeiro F, Rotander A, López-Ibáñez S, Vilas A, Södergren Seilitz F, Clérandeau C, Sampalo M, Rial D, Bellas J, Cachot J, Almeda R, Beiras R. Comparative assessment of the acute toxicity of commercial bio-based polymer leachates on marine plankton. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174403. [PMID: 38960198 DOI: 10.1016/j.scitotenv.2024.174403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/23/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Conventional plastics have become a major environmental concern due to their persistence and accumulation in marine ecosystems. The development of potential degradable polymers (PBP), such as polyhydroxyalkanoates (PHAs) and polylactic acid (PLA), has gained attention as an alternative to mitigate plastic pollution, since they have the potential to biodegrade under certain conditions, and their production is increasing as replacement of conventional polyolefins. This study aimed to assess and compare the toxicity of leachates of pre-compounding PBP (PLA and the PHA, polyhydroxybutyrate-covalerate (PHBv)) and polypropylene (PP) on five marine planktonic species. A battery of standard bioassays using bacteria, microalgae, sea urchin embryos, mussel embryos and copepod nauplii was conducted to assess the toxicity of leachates from those polymers. Additionally, the presence of chemical additives in the leachates was also verified through GC-MS and LC-HRMS analysis. Results showed that PHBv leachates exhibited higher toxicity compared to other polymers, with the microalgae Rhodomonas salina, being the most sensitive species to the tested leachates. On the other hand, PP and PLA generally displayed minimal to no toxicity in the studied species. Estimated species sensitivity distribution curves (SSD) show that PHBv leachates can be 10 times more hazardous to marine plankton than PP or PLA leachates, as demonstrated by the calculated Hazardous Concentration for 5 % of species (HC5). Qualitative chemical analysis supports the toxicological results, with 80 % of compounds being identified in PHBv leachates of which 2,4,6-trichlorophenol is worth mentioning due to the deleterious effects to aquatic biota described in literature. These findings underscore the fact that whereas environmental persistence can be targeted using PBP, the issue of chemical safety remains unsolved by some alternatives, such as PHBv. Gaining a comprehensive understanding of the toxicity profiles of PBP materials through a priori toxicological risk assessment is vital for their responsible application as alternatives to conventional plastics.
Collapse
Affiliation(s)
- F Laranjeiro
- ECIMAT, Centro de Investigación Mariña (CIM), Universidade de Vigo, 36331 Vigo, Galicia, Spain.
| | - A Rotander
- MTM Research Centre, Örebro University, Örebro, Sweden
| | - S López-Ibáñez
- ECIMAT, Centro de Investigación Mariña (CIM), Universidade de Vigo, 36331 Vigo, Galicia, Spain
| | - A Vilas
- ECIMAT, Centro de Investigación Mariña (CIM), Universidade de Vigo, 36331 Vigo, Galicia, Spain
| | | | - C Clérandeau
- EPOC, University of Bordeaux, CNRS, Bordeaux INP, UMR 5805, F-33600 Pessac, France
| | - M Sampalo
- EOMAR, ECOAQUA, University of Las Palmas of Gran Canaria, Canary Islands, Spain
| | - D Rial
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Vigo, Subida a Radio Faro, 50-52 36390 Vigo, Galicia, Spain
| | - J Bellas
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Vigo, Subida a Radio Faro, 50-52 36390 Vigo, Galicia, Spain
| | - J Cachot
- EPOC, University of Bordeaux, CNRS, Bordeaux INP, UMR 5805, F-33600 Pessac, France
| | - R Almeda
- EOMAR, ECOAQUA, University of Las Palmas of Gran Canaria, Canary Islands, Spain
| | - R Beiras
- ECIMAT, Centro de Investigación Mariña (CIM), Universidade de Vigo, 36331 Vigo, Galicia, Spain
| |
Collapse
|
7
|
Santos A, Oliveira M, Lopes I, Almeida M, Venâncio C. Polyhydroxybutyrate (PHB) nanoparticles modulate metals toxicity in Hydra viridissima. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172868. [PMID: 38714257 DOI: 10.1016/j.scitotenv.2024.172868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/02/2024] [Accepted: 04/27/2024] [Indexed: 05/09/2024]
Abstract
The use of bioplastics (e.g., polyhydroxybutyrate) emerged as a solution to help reduce plastic pollution caused by conventional plastics. Nevertheless, bioplastics share many characteristics with their conventional counterparts, such as degradation to nano-sized particles and the ability to sorb environmental pollutants, like metals. This study aimed to assess the potential impacts of the interaction of metals (cadmium - Cd, copper - Cu, and zinc - Zn) with polyhydroxybutyrate nanoplastics (PHB-NPLs; ~200 nm) on the freshwater cnidarian Hydra viridissima in terms of mortality rates, morphological alterations, and feeding behavior. The metal concentrations selected for the combined exposures corresponded to concentrations causing 20 %, 50 %, and 80 % of mortality (LC20, LC50, and LC80, respectively) and the PHB-NPLs concentrations ranged from 0.01 to 1000 μg/L. H. viridissima sensitivity to the metals, based on the LC50's, can be ordered as: Zn < Cd < Cu. Combined exposure to metals and PHB-NPLs yielded distinct outcomes concerning mortality, morphological changes, and feeding behavior, uncovering metal- and dose-specific responses. The interaction between Cd-LCx and PHB-NPLs progressed from no effect at LC20,96h to an ameliorative effect at Cd-LC50,96h. Cu-LCx revealed potential mitigation effects (LC20,96h and LC50,96h) but at Cu-LC80,96h the response shifts to a potentiating effect. For Zn-LCx, response patterns across the combinations with PHB-NPLs were like those induced by the metal alone. PHB-NPLs emerged as a key factor capable of modulating the toxicity of metals. This study highlights the context-dependent interactions between metals and PHB-NPLs in freshwater environments while supporting the need for further investigation of the underlying mechanisms and ecological consequences in forthcoming research.
Collapse
Affiliation(s)
- Ana Santos
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Miguel Oliveira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel Lopes
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mónica Almeida
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cátia Venâncio
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
8
|
Mao M, Ahrens L, Luka J, Contreras F, Kurkina T, Bienstein M, Sárria Pereira de Passos M, Schirinzi G, Mehn D, Valsesia A, Desmet C, Serra MÁ, Gilliland D, Schwaneberg U. Material-specific binding peptides empower sustainable innovations in plant health, biocatalysis, medicine and microplastic quantification. Chem Soc Rev 2024; 53:6445-6510. [PMID: 38747901 DOI: 10.1039/d2cs00991a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Material-binding peptides (MBPs) have emerged as a diverse and innovation-enabling class of peptides in applications such as plant-/human health, immobilization of catalysts, bioactive coatings, accelerated polymer degradation and analytics for micro-/nanoplastics quantification. Progress has been fuelled by recent advancements in protein engineering methodologies and advances in computational and analytical methodologies, which allow the design of, for instance, material-specific MBPs with fine-tuned binding strength for numerous demands in material science applications. A genetic or chemical conjugation of second (biological, chemical or physical property-changing) functionality to MBPs empowers the design of advanced (hybrid) materials, bioactive coatings and analytical tools. In this review, we provide a comprehensive overview comprising naturally occurring MBPs and their function in nature, binding properties of short man-made MBPs (<20 amino acids) mainly obtained from phage-display libraries, and medium-sized binding peptides (20-100 amino acids) that have been reported to bind to metals, polymers or other industrially produced materials. The goal of this review is to provide an in-depth understanding of molecular interactions between materials and material-specific binding peptides, and thereby empower the use of MBPs in material science applications. Protein engineering methodologies and selected examples to tailor MBPs toward applications in agriculture with a focus on plant health, biocatalysis, medicine and environmental monitoring serve as examples of the transformative power of MBPs for various industrial applications. An emphasis will be given to MBPs' role in detecting and quantifying microplastics in high throughput, distinguishing microplastics from other environmental particles, and thereby assisting to close an analytical gap in food safety and monitoring of environmental plastic pollution. In essence, this review aims to provide an overview among researchers from diverse disciplines in respect to material-(specific) binding of MBPs, protein engineering methodologies to tailor their properties to application demands, re-engineering for material science applications using MBPs, and thereby inspire researchers to employ MBPs in their research.
Collapse
Affiliation(s)
- Maochao Mao
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Leon Ahrens
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Julian Luka
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Francisca Contreras
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Tetiana Kurkina
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Marian Bienstein
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | | | | | - Dora Mehn
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Andrea Valsesia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Cloé Desmet
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | | | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| |
Collapse
|
9
|
Lee Y, Kim DH, Lee JS, Kim HS, Maszczyk P, Wang M, Yang Z, Wang DZ, Lee JS. Combined exposure to hypoxia and nanoplastics leads to negative synergistic oxidative stress-mediated effects in the water flea Daphnia magna. MARINE POLLUTION BULLETIN 2024; 202:116306. [PMID: 38574500 DOI: 10.1016/j.marpolbul.2024.116306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
In this study, we investigated the combined effects of hypoxia and NPs on the water flea Daphnia magna, a keystone species in freshwater environments. To measure and understand the oxidative stress responses, we used acute toxicity tests, fluorescence microscopy, enzymatic assays, Western blot analyses, and Ingenuity Pathway Analysis. Our findings demonstrate that hypoxia and NPs exhibit a negative synergy that increases oxidative stress, as indicated by heightened levels of reactive oxygen species and antioxidant enzyme activity. These effects lead to more severe reproductive and growth impairments in D. magna compared to a single-stressor exposure. In this work, molecular investigations revealed complex pathway activations involving HIF-1α, NF-κB, and mitogen-activated protein kinase, illustrating the intricate molecular dynamics that can occur in combined stress conditions. The results underscore the amplified physiological impacts of combined environmental stressors and highlight the need for integrated strategies in the management of aquatic ecosystems.
Collapse
Affiliation(s)
- Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jin-Sol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Piotr Maszczyk
- Department of Hydrobiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Minghua Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
10
|
Santos A, Oliveira M, Almeida M, Lopes I, Venâncio C. Short- and long-term toxicity of nano-sized polyhydroxybutyrate to the freshwater cnidarian Hydra viridissima. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170282. [PMID: 38272078 DOI: 10.1016/j.scitotenv.2024.170282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
The accumulation of increasingly smaller plastic particles in aquatic ecosystems is a prominent environmental issue and is causing a significant impact on aquatic biota. In response to this challenge, biodegradable plastics have emerged as a potential ecological alternative. Nevertheless, despite recent progress in polymer toxicology, there is still limited understanding of the ecological implications of biodegradable plastics in freshwater ecosystems. This study evaluated the toxicity of polyhydroxybutyrate nano-sized particles (PHB-NPLs) on the freshwater cnidarian Hydra viridissima assessing individual and population-level effects. Data revealed low toxicity of PHB-NPLs to H. viridissima in the short-term, as evidenced by the absence of significant malformations and mortality after the 96-h assays. In addition, hydras exhibited rapid and complete regeneration after 96 h of exposure to PHB-NPLs. Feeding assays revealed no significant alterations in prey consumption behavior in the 96-h mortality and malformations assay and the regeneration assay. However, significantly increased feeding rates were observed after long-term exposure, across all tested concentrations of PHB-NPLs. This increase may be attributed to the organisms' heightened energetic demand, stemming from prolonged activation of detoxification mechanisms. These changes may have a cascading effect within the food web, influencing community dynamics and ecosystem stability. Furthermore, a dose-dependent response on the hydras' populational growth was found, with an estimated 20 % effect concentration (EC20,8d) on this endpoint of 10.9 mg PHB-NPLs/L that suggests potential long-term impacts on the population's reproductive output and potential depression and local extinction upon long-term exposure to PHB-NPLs on H. viridissima. The obtained data emphasizes the importance of evaluating sublethal effects and supports the adoption of long-term assays when assessing the toxicity of novel polymers, providing crucial data for informed regulation to safeguard freshwater ecosystems. Future research should aim to unravel the underlying mechanisms behind these sublethal effects, as well as the impact of the generated degradation products.
Collapse
Affiliation(s)
- Ana Santos
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Miguel Oliveira
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Mónica Almeida
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel Lopes
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cátia Venâncio
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|