1
|
Zhang Y, Gu C, Zhao L, Wang B, Sun Y, Lou Y, Ma D, Wang Y. Obesity-associated reduction of miR-150-5p in extracellular vesicles promotes ventilator-induced lung injury by modulating the lysosomal degradation of VE-cadherin. Cell Death Discov 2025; 11:220. [PMID: 40328745 PMCID: PMC12055972 DOI: 10.1038/s41420-025-02499-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/13/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Obese patient has a high risk of ventilator-induced lung injury (VILI) but its underlying mechanisms remain elusive. This study was designed to explore the role of circulating plasma extracellular vesicles (EVs) on the progression of VILI in the context of obesity. After high tidal volume mechanical ventilation, mice treated with plasma EVs from obese patients developed more severe lung damage than mice treated with plasma EVs from normal controls. miRNA sequencing of plasma EVs from obese patients revealed a significant downregulation of miR-150-5p compared to the others. miR-150-5p was found to target on XBP1s which subsequently regulated RAB7 as verified through dual-luciferase assays. This pathway promoted lysosomal degradation of vascular endothelial (VE)-cadherin, leading to an increased endothelial permeability. Obese mice showed an enhanced XBP1s/RAB7 expression, reduced VE-cadherin levels, and aggravated endothelial barrier damage and all of which intensified VILI. Administration of miR-150-5p agomir in obese mice mitigated VILI. Thus, this study highlights the low levels of miR-150-5p in EVs from obese patients modulated VILI severity via the XBP1s/RAB7 axis and the lysosomal degradation of VE-cadherin.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Anesthesiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Changping Gu
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Liang Zhao
- Department of Anesthesiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Bailun Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yongtao Sun
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Yalin Lou
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Daqing Ma
- Perioperative and Systems Medicine Laboratory and Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK.
| | - Yuelan Wang
- Department of Anesthesiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
2
|
Rajpal VR, Nongthongbam B, Bhatia M, Singh A, Raina SN, Minkina T, Rajput VD, Zahra N, Husen A. The nano-paradox: addressing nanotoxicity for sustainable agriculture, circular economy and SDGs. J Nanobiotechnology 2025; 23:314. [PMID: 40275357 PMCID: PMC12023416 DOI: 10.1186/s12951-025-03371-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
Engineered nanomaterials (ENMs) have aroused extensive interest in agricultural, industrial, and medical applications. The integration of ENMs into the agricultural systems aligns with the principles of United Nations' sustainable development goals (SDGs), circular economy (CE) and bio-economy (BE) principles. This approach offers excellent opportunities to enhance productivity and address global climate change challenges. The revelation of the adverse effects of nanomaterials (NMs) on various organisms and ecosystems, however, has fueled the debate on 'Nano-paradox' leading to emergence of a new research domain 'Nanotoxicology'. ENMs have shown different interactions with biological and environmental systems as compared to their bulk counterparts. They bioaccumulate in organisms, soils, and other environmental matrices, move through food chains and reach higher trophic levels including humans ultimately resulting in oxidative stress and cellular damage. Understanding nano-bio interactions, the mechanism of gene- and cytotoxicity, and associated potential hazards, is therefore, essential to mitigate their toxicological outputs. This review comprehensively examines the cyto- and genotoxicity mechanisms of ENMs in biological systems, covering aspects such as their entry, uptake, cellular responses, dynamic interactions in biological environments their long-term effects and environmental risk assessment (ERA). It also discusses toxicological assessment methods, regulatory policies, strategies for toxicity management/mitigation and future research directions in nanotechnology, all within the context of SDGs, CE, promoting resource efficiency and sustainability. Navigating the nano-paradox involves balancing the benefits of nanomaterials with concerns about nanotoxicity. Prioritizing thorough research on above facets can ensure sustainability and safety, enabling responsible harnessing of nanotechnology's transformative potential in various applications including mitigating global climate change and enhancing agricultural productivity.
Collapse
Affiliation(s)
| | | | - Manika Bhatia
- TERI School of Advanced Studies, Vasant Kunj Institutional Area, New Delhi, Delhi, 110070, India
| | - Apekshita Singh
- Department of Biotechnology, Amity University of Biotechnology, Noida, Uttar Pradesh, India
| | - Soom Nath Raina
- Department of Biotechnology, Amity University of Biotechnology, Noida, Uttar Pradesh, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Noreen Zahra
- Department of Botany, Government College Women University, Faisalabad, 38000, Pakistan
- Postgraduate Office, Amin Campus, The University of Faisalabad, Faisalabad, 38000, Pakistan
| | - Azamal Husen
- Wolaita Sodo University, PO Box 138, Wolaita, Ethiopia.
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India.
| |
Collapse
|
3
|
Du F, Hou M, Lu S, Ding X, Zhang L, Du Y, An Z, Cai W, Zhao L, Wu W, Cao Z. Toxicity enhancement of microplastics released from food containers through thermal aging: Absorbing more serum proteins thus activating the innate immune response via actin polymerization. ENVIRONMENT INTERNATIONAL 2025; 197:109358. [PMID: 40049044 DOI: 10.1016/j.envint.2025.109358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/01/2025] [Accepted: 02/28/2025] [Indexed: 03/25/2025]
Abstract
This study examined the effects of hot high-fat simulants on the physicochemical properties of microplastics (MPs) from polypropylene (PP)-, low-density polyethylene (LDPE)-, and polylactic acid (PLA)-based single-use food container (SUFC) leachates and those of aging on their immunomodulatory effectors. Scenario studies have demonstrated that MPs were released from these three types of SUFCs. LDPE- and PLA-based SUFCs also released cellulose. Among the SUFCs, only the PP leachates particles exhibited a new absorption peak at 1725 cm-1, which aging phenomenon may be attributed to the presence of unstable tertiary carbon atoms. Subsequently, we investigated the immunomodulatory effects of removing additive both PP and thermal-aged PP with polystyrene (PS) and carboxyl-modified PS (PS-COOH) polymer backbones as reference materials. The findings indicated that thermal-aged PP and PS-COOH induced comparable innate immune responses, with PS-COOH particles exhibiting a similar size to SUFC percolates. Consequently, PS and PS-COOH were selected as original and thermal-aged MPs, respectively, to evaluate the effects of aging on innate immunity. The results revealed thata protein corona formed on both particle types, with more protein adsorption observed on PS-COOH particles. The complex enhanced the phagocytosis of RAW264.7 macrophages and increased the expression of pro-inflammatory genes NOS2 and TNF-α through an actin polymerization cross-linking mechanism. In this study, we investigated how thermal-aged MPs affect innate immune responses using PS-COOH as a model system, emphasizing the importance of a comprehensive safety evaluations of MPs.
Collapse
Affiliation(s)
- Fang Du
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Meiqian Hou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Song Lu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Xiaotian Ding
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Ling Zhang
- School of Public Health, Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Xinxiang Medical University, Xinxiang 453003, China
| | - Yajie Du
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Zhen An
- School of Public Health, Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Xinxiang Medical University, Xinxiang 453003, China
| | - Wenwen Cai
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; Huanghuai Laboratory, Zhengzhou, Henan 450003, China
| | - Leicheng Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; Huanghuai Laboratory, Zhengzhou, Henan 450003, China
| | - Weidong Wu
- School of Public Health, Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, Xinxiang Medical University, Xinxiang 453003, China.
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; Huanghuai Laboratory, Zhengzhou, Henan 450003, China.
| |
Collapse
|
4
|
Nazari M, Iranbakhsh A, Ebadi M, Oraghi Ardebili Z. Polyethylene nanoplastics affected morphological, physiological, and molecular indices in tomato (Solanum lycopersicum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109523. [PMID: 39827703 DOI: 10.1016/j.plaphy.2025.109523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
This study explored morphological, physiological, molecular, and epigenetic responses of tomatoes (Solanum lycopersicum) to soil contamination with polyethylene nanoplastics (PENP; 0.01, 0.1, and 1 gkg-1 soil). The PENP pollution led to severe changes in plant morphogenesis. The PENP treatments were associated with decreased plant biomass, reduced internode length, delayed flowering, and prolonged fruit ripening. Abnormal inflorescences, flowers, and fruits observed in the PENP-exposed seedlings support genetic changes and meristem dysfunction. Exposure of seedlings to PENP increased H2O2 accumulation and damaged membranes, implying oxidative stress. The PENP treatments induced activities of catalase (EC1.11.1.6), peroxidase (EC1.11.1.7), and phenylalanine ammonia-lyase (EC4.3.1.24) enzymes. Soil contamination with PENP also decreased the net photosynthesis, maximum photosystem efficiency, stomatal conductance, and transpiration rate. The nano-pollutant upregulated the expression of the histone deacetylase (HDA3) gene and R2R3MYB transcription factor. However, the AP2a gene was down-regulated in response to the PENP treatment. Besides, EPNP epigenetically contributed to changes in DNA methylation. The concentrations of proline, soluble phenols, and flavonoids also displayed an upward trend in response to the applied PENP treatments. The long-term exposure of seedlings to PENP influenced fruit biomass, firmness, ascorbate, lycopene, and flavonoid content. These findings raise concerns about the hazardous aspects of PENP to agricultural ecosystems and food security.
Collapse
Affiliation(s)
- Masoumeh Nazari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mostafa Ebadi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | | |
Collapse
|
5
|
Ran M, Nie X, Wang J, Xie R, Lin X, Zhu H, Wan Q, Fu Y. Deposition behaviors and interfacial interaction mechanism between carboxyl-modified polystyrene nanoplastics and magnetite in aquatic environment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117608. [PMID: 39733597 DOI: 10.1016/j.ecoenv.2024.117608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/18/2024] [Accepted: 12/21/2024] [Indexed: 12/31/2024]
Abstract
In aquatic environments, the deposition behaviors of nanoplastics (NPs) are closely associated with interfacial interaction between NPs and iron (hydr)oxides minerals, which are typically coupled with solution chemistry and organic matter. However, the roles of solution chemistry and organic matter in the deposition behavior of NPs with iron (hydr)oxides minerals and related interfacial interaction mechanism are still poorly understood. In this study, the deposition behaviors of carboxyl-modified polystyrene nanoparticles (COOH-PSNPs) with magnetite were systematically investigated. The results showed that electrostatic attraction, hydrogen bond, and charge-assisted hydrogen bond (CAHB) were the main forces for the deposition and interfacial interaction mechanism between COOH-PSNPs and magnetite. Increasing pH could significantly inhibit the deposition of COOH-PSNPs with magnetite. At pH 6.5, phosphate and dichromate significantly inhibited the deposition of COOH-PSNPs since their competitive adsorption for the surface sites on magnetite led to a potential reversal of magnetite, resulting in the strong electrostatic repulsion between COOH-PSNPs and magnetite. Moreover, when the concentration of phosphate exceeded 0.01 mM, the deposition of COOH-PSNPs was completely hindered. Organic macromolecules (OMs) markedly inhibited the interfacial interaction and deposition of COOH-PSNPs with magnetite by enhancing the electrostatic repulsion and steric hindrance between COOH-PSNPs and magnetite due to the formation of magnetite-OM associations. The inhibition abilities followed the order sodium alginate (0.1 mM) > humic acid (0.2 mM) > bovine serum albumin (5 mM). This study may provide insights for better understanding of environmental behaviors of COOH-PSNPs associated with magnetite and organic matter in natural environments at the molecular level.
Collapse
Affiliation(s)
- Meimei Ran
- School of Geography and Environmental Sciences, Guizhou Normal University, Guiyang 550025, China; State Key Laboratory of Ore Deposit Geochemistry, Research Center of Ecological Environment and Resource Utilization, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xin Nie
- State Key Laboratory of Ore Deposit Geochemistry, Research Center of Ecological Environment and Resource Utilization, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jingxin Wang
- Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Ruiyin Xie
- State Key Laboratory of Ore Deposit Geochemistry, Research Center of Ecological Environment and Resource Utilization, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Xiaoping Lin
- State Key Laboratory of Ore Deposit Geochemistry, Research Center of Ecological Environment and Resource Utilization, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Hanjun Zhu
- State Key Laboratory of Ore Deposit Geochemistry, Research Center of Ecological Environment and Resource Utilization, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Quan Wan
- State Key Laboratory of Ore Deposit Geochemistry, Research Center of Ecological Environment and Resource Utilization, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Yuhong Fu
- School of Geography and Environmental Sciences, Guizhou Normal University, Guiyang 550025, China.
| |
Collapse
|
6
|
Bu W, Cui Y, Jin Y, Wang X, Jiang M, Huang R, Egbobe JO, Zhao X, Tang J. Unmasking the Invisible Threat: Biological Impacts and Mechanisms of Polystyrene Nanoplastics on Cells. TOXICS 2024; 12:908. [PMID: 39771123 PMCID: PMC11728749 DOI: 10.3390/toxics12120908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025]
Abstract
Polystyrene nanoplastics (PS-NPs), a pervasive component of plastic pollution, have emerged as a significant environmental and health threat due to their microscopic size and bioaccumulative properties. This review systematically explores the biological effects and mechanisms of PS-NPs on cellular systems, encompassing oxidative stress, mitochondrial dysfunction, DNA damage, inflammation, and disruptions in autophagy. Notably, PS-NPs induce multiple forms of cell death, including apoptosis, ferroptosis, necroptosis, and pyroptosis, mediated through distinct yet interconnected molecular pathways. The review also highlights various factors that influence the cytotoxicity of PS-NPs, such as particle size, surface modifications, co-exposure with other pollutants, and protein corona formation. These complex interactions underscore the extensive and potentially hazardous impacts of PS-NPs on cellular health. The findings presented here emphasize the need for continued research on the mechanisms underlying PS-NP toxicity and the development of effective strategies for mitigating their effects, thereby informing regulatory frameworks aimed at minimizing environmental and biological risks.
Collapse
Affiliation(s)
- Wenxia Bu
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (W.B.); (Y.C.); (Y.J.); (X.W.); (M.J.); (J.O.E.)
| | - Ye Cui
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (W.B.); (Y.C.); (Y.J.); (X.W.); (M.J.); (J.O.E.)
| | - Yueyuan Jin
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (W.B.); (Y.C.); (Y.J.); (X.W.); (M.J.); (J.O.E.)
| | - Xuehai Wang
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (W.B.); (Y.C.); (Y.J.); (X.W.); (M.J.); (J.O.E.)
| | - Mengna Jiang
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (W.B.); (Y.C.); (Y.J.); (X.W.); (M.J.); (J.O.E.)
| | - Ruiyao Huang
- Department of Clinical Medicine, Nantong University Xinglin College, Nantong 226000, China;
| | - JohnPaul Otuomasiri Egbobe
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (W.B.); (Y.C.); (Y.J.); (X.W.); (M.J.); (J.O.E.)
| | - Xinyuan Zhao
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (W.B.); (Y.C.); (Y.J.); (X.W.); (M.J.); (J.O.E.)
| | - Juan Tang
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (W.B.); (Y.C.); (Y.J.); (X.W.); (M.J.); (J.O.E.)
| |
Collapse
|
7
|
Kumar D, Biswas JK, Mulla SI, Singh R, Shukla R, Ahanger MA, Shekhawat GS, Verma KK, Siddiqui MW, Seth CS. Micro and nanoplastics pollution: Sources, distribution, uptake in plants, toxicological effects, and innovative remediation strategies for environmental sustainability. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108795. [PMID: 38878390 DOI: 10.1016/j.plaphy.2024.108795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 07/07/2024]
Abstract
Microplastics and nanoplastics (MNPs), are minute particles resulting from plastic fragmentation, have raised concerns due to their widespread presence in the environment. This study investigates sources and distribution of MNPs and their impact on plants, elucidating the intricate mechanisms of toxicity. Through a comprehensive analysis, it reveals that these tiny plastic particles infiltrate plant tissues, disrupting vital physiological processes. Micro and nanoplastics impair root development, hinder water and nutrient uptake, photosynthesis, and induce oxidative stress and cyto-genotoxicity leading to stunted growth and diminished crop yields. Moreover, they interfere with plant-microbe interactions essential for nutrient cycling and soil health. The research also explores the translocation of these particles within plants, raising concerns about their potential entry into the food chain and subsequent human health risks. The study underscores the urgency of understanding MNPs toxicity on plants, emphasizing the need for innovative remediation strategies such as bioremediation by algae, fungi, bacteria, and plants and eco-friendly plastic alternatives. Addressing this issue is pivotal not only for environmental conservation but also for ensuring sustainable agriculture and global food security in the face of escalating plastic pollution.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Department of Botany, University of Delhi, New Delhi-110007, Delhi, India
| | - Jayanta Kumar Biswas
- International Centre for Ecological Engineering, Department of Ecological Studies, University of Kalyani, Kalyani, Nadia- 741235, West Bengal, India
| | - Sikandar I Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore- 560064, Karnataka, India
| | - Rachana Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida- 201308, India
| | - Ravindra Shukla
- Department of Botany, Indira Gandhi National Tribal University, Amarkantak- 484887, Madhya Pradesh, India
| | - Mohammad Abass Ahanger
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Gyan Singh Shekhawat
- Department of Botany, Jai Narain Vyas University, Jodhpur, 342005, Rajasthan, India
| | - Krishan K Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning-530007, China
| | - Mohammed Wasim Siddiqui
- Department of Food Science and Postharvest Technology, Bihar Agricultural University, Sabour-813210, Bhagalpur, Bihar, India
| | | |
Collapse
|
8
|
Liu Y, Li S, Wang L, Zhang P, Liu T, Li X. Temperature fluctuation in soil alters the nanoplastic sensitivity in wheat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172626. [PMID: 38657823 DOI: 10.1016/j.scitotenv.2024.172626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/27/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Despite the wide acknowledgment that plastic pollution and global warming have become serious agricultural concerns, their combined impact on crop growth remains poorly understood. Given the unabated megatrend, a simulated soil warming (SWT, +4 °C) microcosm experiment was carried out to provide a better understanding of the effects of temperature fluctuations on wheat seedlings exposed to nanoplastics (NPs, 1 g L-1 61.71 ± 0.31 nm polystyrene). It was documented that SWT induced oxidative stress in wheat seedlings grown in NPs-contaminated soil, with an 85.56 % increase in root activity, while decreasing plant height, fresh weight, and leaf area by 8.72 %, 47.68 %, and 15.04 % respectively. The SWT also resulted in reduced photosynthetic electron-transfer reaction and Calvin-Benson cycle in NPs-treated plants. Under NPs, SWT stimulated the tricarboxylic acid (TCA) metabolism and bio-oxidation process. The decrease in photosynthesis and the increase in respiration resulted in an 11.94 % decrease in net photosynthetic rate (Pn). These results indicated the complicated interplay between climate change and nanoplastic pollution in crop growth and underscored the potential risk of nanoplastic pollution on crop production in the future climate.
Collapse
Affiliation(s)
- Yujia Liu
- State Key Laboratory of Black Soil Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Shuxin Li
- State Key Laboratory of Black Soil Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lichun Wang
- Key Laboratory of Crop Eco-Physiology and Farming System in the Northeastern, Institute of Agricultural Resources and Environment, Ministry of Agriculture and Rural Affair, Jilin Academy of Agricultural Sciences, Changchun 130033, China.
| | - Peng Zhang
- State Key Laboratory of Black Soil Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Tianhao Liu
- State Key Laboratory of Black Soil Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Engineering Laboratory for Eco-agriculture in Water Source of Liaoheyuan, Chinese Academy of Sciences, Changchun 130102, China
| | - Xiangnan Li
- State Key Laboratory of Black Soil Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Li Q, Zhang B, Liu W, Zou H. Strigolactones alleviate the toxicity of polystyrene nanoplastics (PS-NPs) in maize (Zea mays L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170626. [PMID: 38325482 DOI: 10.1016/j.scitotenv.2024.170626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Nanoplastics are widely used across various fields, yet their uptake can potentially exert adverse effects on plant growth and development, ultimately reducing yields. While there is growing awareness of the phytotoxicity caused by nanoplastics, our understanding of effective strategies to prevent nanoplastic accumulation in plants remains limited. This study explores the role of strigolactones (SLs) in mitigating the toxicity of polystyrene nanoplastics (PS-NPs) in Zea mays L. (maize). SLs application markedly inhibited PS-NPs accumulation in maize roots, thus enhancing the root weight, shoot weight and shoot length of maize. Physiological analysis showed that SLs application activated the activities of antioxidant defence enzymes, superoxide dismutase and catalase, to decrease the malondialdehyde content and electrolyte leakage and alleviate the accumulation of H2O2 and O2.- induced by PS-NPs in maize plants. Transcriptomic analyses revealed that SLs application induced transcriptional reprogramming by regulating the expression of genes related to MAPK, plant hormones and plant-pathogen interaction signal pathways in maize treated with PS-NPs. Notably, the expression of genes, such as ZmAUX/IAA and ZmGID1, associated with phytohormones in maize treated with PS-NPs underwent significant changes. In addition, SLs induced metabolic dynamics changes related to amino acid biosynthesis, ABC transporters, cysteine and methionine metabolism in maize treated with PS-NPs. In summary, these results strongly reveal that SLs could serve as a strategy to mitigate the accumulation and alleviate the stress of PS-NPs in maize, which appears to be a potential approach for mitigating the phytotoxicity induced by PS-NPs in maize.
Collapse
Affiliation(s)
- Qiaolu Li
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Binglin Zhang
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Weijuan Liu
- College of Agriculture, Yangtze University, Jingzhou 434025, China.
| | - Huawen Zou
- College of Agriculture, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
10
|
Yang X, Xu N, Wang X, Yang L, Sun S. Mechanisms of increased small nanoplastic particle retention in water-saturated sand media with montmorillonite and diatomite: Particle sizes, water components, and modelling. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133056. [PMID: 38008050 DOI: 10.1016/j.jhazmat.2023.133056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/29/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
The processes by which small nanoplastics (NPs) accumulate in soil are unclear. To clarify the different deposition processes that affect small NPs (< 30 nm) compared to larger NPs in the soil environment, due to their interaction with clays as major soil components, the transport behavior of two-sized NPs (20 and 80 nm) with two clays (diatomite (Diat) and montmorillonite (Mont)) in NaCl and CaCl2 solutions were investigated in water-saturated quartz sand columns. The experimental results showed that more 20 nm NPs could enter the lattice structure of Diat than Mont in NaCl solution. This contributed to the stronger deposition of 20 nm NPs by Diat on sand, which was associated with a lower k1d/k1 value (obtained from two-site kinetic attachment model). In contrast, 80 nm NPs had a stronger reversible retention than 20 nm NPs with Mont, even though both sizes of NPs-Mont displayed a similar transportability. In CaCl2 solution, the larger NPs-Mont hetero-aggregates formed with a stronger suppressed depth of φmax based on Derjaguin-Landau-Verwey-Overbeek theory. Thus, Mont had a stronger transport inhibition than Diat for both NPs sizes, with a lower k1d/k1. These findings could benefit in predicting the size-based deposition of NPs in a heterogenous soil environment.
Collapse
Affiliation(s)
- Xiangrong Yang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Nan Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xuelian Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Li Yang
- Jiangsu Key Laboratory of Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Siyi Sun
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
11
|
Hu M, Huang Y, Liu L, Ren L, Li C, Yang R, Zhang Y. The effects of Micro/Nano-plastics exposure on plants and their toxic mechanisms: A review from multi-omics perspectives. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133279. [PMID: 38141304 DOI: 10.1016/j.jhazmat.2023.133279] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
In recent years, plastic pollution has become a global environmental problem, posing a potential threat to agricultural ecosystems and human health, and may further exacerbate global food security problems. Studies have revealed that exposure to micro/nano-plastics (MPs/NPs) might cause various aspects of physiological toxicities, including plant biomass reduction, intracellular oxidative stress burst, photosynthesis inhibition, water and nutrient absorption reduction, cellular and genotoxicity, seed germination retardation, and that the effects were closely related to MP/NP properties (type, particle size, functional groups), exposure concentration, exposure duration and plant characteristics (species, tissue, growth stage). Based on a brief review of the physiological toxicity of MPs/NPs to plant growth, this paper comprehensively reviews the potential molecular mechanism of MPs/NPs on plant growth from perspectives of multi-omics, including transcriptome, metabolome, proteome and microbiome, thus to reveal the role of MPs/NPs in plant transcriptional regulation, metabolic pathway reprogramming, protein translational and post-translational modification, as well as rhizosphere microbial remodeling at multiple levels. Meanwhile, this paper also provides prospects for future research, and clarifies the future research directions and the technologies adopted.
Collapse
Affiliation(s)
- Mangu Hu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongxiang Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lin Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Rongchao Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Yueqin Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
12
|
Naidu G, Nagar N, Poluri KM. Mechanistic Insights into Cellular and Molecular Basis of Protein-Nanoplastic Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305094. [PMID: 37786309 DOI: 10.1002/smll.202305094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/07/2023] [Indexed: 10/04/2023]
Abstract
Plastic waste is ubiquitously present across the world, and its nano/sub-micron analogues (plastic nanoparticles, PNPs), raise severe environmental concerns affecting organisms' health. Considering the direct and indirect toxic implications of PNPs, their biological impacts are actively being studied; lately, with special emphasis on cellular and molecular mechanistic intricacies. Combinatorial OMICS studies identified proteins as major regulators of PNP mediated cellular toxicity via activation of oxidative enzymes and generation of ROS. Alteration of protein function by PNPs results in DNA damage, organellar dysfunction, and autophagy, thus resulting in inflammation/cell death. The molecular mechanistic basis of these cellular toxic endeavors is fine-tuned at the level of structural alterations in proteins of physiological relevance. Detailed biophysical studies on such protein-PNP interactions evidenced prominent modifications in their structural architecture and conformational energy landscape. Another essential aspect of the protein-PNP interactions includes bioenzymatic plastic degradation perspective, as the interactive units of plastics are essentially nano-sized. Combining all these attributes of protein-PNP interactions, the current review comprehensively documented the contemporary understanding of the concerned interactions in the light of cellular, molecular, kinetic/thermodynamic details. Additionally, the applicatory, economical facet of these interactions, PNP biogeochemical cycle and enzymatic advances pertaining to plastic degradation has also been discussed.
Collapse
Affiliation(s)
- Goutami Naidu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Nupur Nagar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
13
|
Wu H, He B, Chen B, Liu A. Toxicity of polyvinyl chloride microplastics on Brassica rapa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122435. [PMID: 37625773 DOI: 10.1016/j.envpol.2023.122435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Microplastics (MPs) can pose high risk to living organisms due to their very small sizes. This study selected polyvinyl chloride MPs (PVC-MPs) which experienced up to 1000 h UV light radiation to investigate the influence of PVC-MPs on Brassica rapa growth. The outcomes showed the presence of PVC-MPs inhibited the plants' growth. The stem length, root length, fresh weight and dry weight of plants exposed to PVC-MPs after 30 days reduced by 45.9%, 35.2%, 26.1% and 5.2%, respectively. The chlorophyll, soluble sugar, malondialdehyde (MDA) and catalase (CAT) concentrations for plants exposed to PVC-MPs after 30 days increased by 25.9%, 135.7%, 88.7% and 47.1% respectively. It was also observed that PVC-MPs blocked the plants' leaf stomata and even entered plants' bodies. This might lead to PVC-MPs movement within the plants and influence plants' growth. The transcriptomic analysis results indicated that exposure to PVC-MPs up-regulated metabolic pathway of plant hormone signal transduction of the plants and down-regulated pathway network of ribosome. However, the research outcomes also showed that the PVC-MPs' locations in soil (located at the upper layers or at lower layers) and the UV light radiation time did not exert significantly different influences on inhibiting plants' growth. This can be attributed to PVC-MPs' small sizes and not much decomposition under light radiation. These imply that longer light radiation time and different particle sizes should be included into future research in order to further explore photodegraded MPs' toxicity effects on plants.
Collapse
Affiliation(s)
- Hao Wu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Beibei He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Bocheng Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - An Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|