1
|
Yang S, Yu R, Yang F, Li J, Wang L, Wu G, Chen L, Yang T, Duoji Z, Wang Y, Gao X, Liu Y. Mediation role of gut microbiota in the association between ambient fine particulate matter components and cardiovascular disease: Evidence from a China cohort. ENVIRONMENTAL RESEARCH 2025; 275:121421. [PMID: 40113064 DOI: 10.1016/j.envres.2025.121421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/25/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Pairwise associations among fine particulate matter (PM2.5), gut microbiota, and cardiovascular disease (CVD) have been established. However, the mediating role of gut microbiota in the relationship between PM2.5 and its components and CVD remains unclear. METHODS We included 1459 participants from the China Multi-Ethnic Cohort between May 2018 and September 2019. CVD was identified using ICD-10 codes based on hospital surveillance system. PM2.5 and its components were sourced from the ChinaHighAirPollutants dataset. Gut microbiota was obtained from 16S rRNA sequencing of stool samples, and five α-indexes along with 1088 gut compositions were used as mediators. Cox proportional hazards and multiple linear regression were used to explore the associations among PM2.5 and its components, gut microbiota, and CVD. Causal mediation analysis was conducted to evaluate the potential mediating role of gut microbiota between PM2.5 and its components and CVD. RESULTS Among all the participants, 204 (14.0 %) had developed CVD during a 5501 person-year follow-up (median, 3.8 years). The ACE, Chao1, and Obs indexes positively mediated the associations of PM2.5 and its components with both CVD and stroke, with mediation proportions ranging from 7.9 % to 8.9 % for CVD and 10.0 %-12.1 % for stroke. The ACE index had the highest mediation proportion (12.1 %) in the relationship between sulfate and stroke. The genus Pasteurella also demonstrated a mediating role, accounting for 2.6 %-3.2 % for CVD, and 2.5 %-3.6 % for stroke, exhibiting the highest mediation proportion (3.6 %) on the association between black carbon or nitrate and stroke. CONCLUSION Three α-indexes (ACE, Chao1, and Obs) and the Pasteurella positively mediated the association between PM2.5 and its components and CVD risk. Enhancing the richness of gut microbiota could potentially reduce the risk of CVD induced by PM2.5 and its components.
Collapse
Affiliation(s)
- Shaokun Yang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rui Yu
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fen Yang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiawei Li
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lele Wang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Gonghua Wu
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liling Chen
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Tingting Yang
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhuoma Duoji
- Tibet University Medical College, Lasa, Tibet, China
| | - Yanjiao Wang
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Xufang Gao
- Chengdu Center for Disease Control and Prevention, Chengdu, Sichuan, China.
| | - Yuanyuan Liu
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Zhou X, Fang Z, Lv Y, Li C, Xu S, Cheng K, Ren Y, Lv N, Gao B, Xu H. Combined health effects of air pollutant mixtures on respiratory mortality using BKMR in Hangzhou, China. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2024; 74:884-894. [PMID: 39348213 DOI: 10.1080/10962247.2024.2411033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
Previous research on respiratory system mortality primarily focused on understanding their combined effects and have neglected the fact that air pollution mixtures are interrelated. This study used Bayesian kernel machine regression (BKMR) to analyze the relationship between air pollutant mixtures and respiratory mortality in Hangzhou, China from 2014 to 2018. The results showed a significant association between pollutant mixtures and respiratory system mortality primarily driven by PM2.5 and SO2. The joint exposure of air pollutants was positively correlated with respiratory system mortality at lag 01 and lag 02 days. The estimated joint effects of log-transformed mixture air pollution exposure on log-transformed respiratory system mortality increased from -0.02 (95% CI: -0.08-0.02) and -0.01 (95% CI: -0.05-0.04) at the 25th percentile to 0.06 (95% CI: 0.01-0.12) and 0.04 (95% CI: -0.001, 0.09) at the 75th percentile. Additionally, there was evidence of an interaction between O3 and PM10. This study confirms that exposure to multiple pollutants is a significant public health problem facing the Hangzhou population given the compounded effect proven with regression analysis, while furthermore, the control of PM2.5 and SO2 also represents a serious concern.Implications: Evidence indicates interactions between O3 and PM10. This study demonstrates that exposure to multiple pollutants exerts combined effects on the public health of the Hangzhou population, highlighting the importance of controlling PM2.5 and SO2.
Collapse
Affiliation(s)
- Xiaocong Zhou
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Zisi Fang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Ye Lv
- Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, People's Republic of China
| | - Chaokang Li
- Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, People's Republic of China
| | - Shanshan Xu
- Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, People's Republic of China
| | - Keyi Cheng
- Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, People's Republic of China
| | - Yanjun Ren
- Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, People's Republic of China
| | - Na Lv
- Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, People's Republic of China
| | - Bing Gao
- Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, People's Republic of China
| | - Hong Xu
- Department of Health Hazards Surveillance, Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
3
|
Cruells A, Cabrera-Rubio R, Bustamante M, Pelegrí D, Cirach M, Jimenez-Arenas P, Samarra A, Martínez-Costa C, Collado MC, Gascon M. The influence of pre- and postnatal exposure to air pollution and green spaces on infant's gut microbiota: Results from the MAMI birth cohort study. ENVIRONMENTAL RESEARCH 2024; 257:119283. [PMID: 38830395 DOI: 10.1016/j.envres.2024.119283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/14/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Animal and human studies indicate that exposure to air pollution and natural environments might modulate the gut microbiota, but epidemiological evidence is very scarce. OBJECTIVES To assess the potential impact of pre- and postnatal exposure to air pollution and green spaces on infant gut microbiota assembly and trajectories during the first year of life. METHODS MAMI ("MAternal MIcrobes") birth cohort (Valencia, Spain, N = 162) was used to study the impact of environmental exposure (acute and chronic) on infant gut microbiota during the first year of life (amplicon-based 16S rRNA sequencing). At 7 days and at 1, 6 and 12 months, residential pre- and postnatal exposure to air pollutants (NO2, black carbon -BC-, PM2.5 and O3) and green spaces indicators (NDVI and area of green spaces at 300, 500 and 1000 m buffers) were obtained. For the association between exposures and alpha diversity indicators linear regression models (cross-sectional analyses) and mixed models, including individual as a random effect (longitudinal analyses), were applied. For the differential taxon analysis, the ANCOM-BC package with a log count transformation and multiple-testing corrections were used. RESULTS Acute exposure in the first week of life and chronic postnatal exposure to NO2 were associated with a reduction in microbial alpha diversity, while the effects of green space exposure were not evident. Acute and chronic (prenatal or postnatal) exposure to NO2 resulted in increased abundance of Haemophilus, Akkermansia, Alistipes, Eggerthella, and Tyzerella populations, while increasing green space exposure associated with increased Negativicoccus, Senegalimassilia and Anaerococcus and decreased Tyzzerella and Lachnoclostridium populations. DISCUSSION We observed a decrease in the diversity of the gut microbiota and signs of alteration in its composition among infants exposed to higher levels of NO2. Increasing green space exposure was also associated with changes in gut microbial composition. Further research is needed to confirm these findings.
Collapse
Affiliation(s)
- Adrià Cruells
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Raúl Cabrera-Rubio
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Dolors Pelegrí
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Marta Cirach
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Pol Jimenez-Arenas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Anna Samarra
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Cecilia Martínez-Costa
- Department of Pediatrics, University of Valencia, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Mireia Gascon
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain.
| |
Collapse
|
4
|
Wang J, Huang J, Gong Y, Xu N, Zhou Y, Zhu L, Shi L, Chen Y, Jiang Q, Zhou Y. Interactive and lag effects of environmental factors on the density of schistosome-transmitting Oncomelania hupensis: A twelve-year monthly repeated survey. Parasitol Res 2024; 123:301. [PMID: 39150558 DOI: 10.1007/s00436-024-08323-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
Schistosomiasis is a significant public health threat, and Oncomelania hupensis is the only intermediate host for schistosoma japonicum. We conducted 12-year monthly repeated surveys to explore the interactive and lag effects of environmental factors on snail density and to monitor their long-term and seasonal trends in a bottomland around the Dongting Lake region in China. Relevant environmental data were obtained from multiple sources. A Bayesian kernel machine regression model and a Bayesian temporal model combined with a distributed lag model were constructed to analyze interactive and lag effects of environmental factors on snail density. The results indicated the average annual snail density in the study site exhibited an increasing and then decreasing trend, peaking in 2013. Snail densities were the highest in October and the lowest in January in a year. Normalized Difference Vegetation Index (NDVI) and water level were the most effective predictors of snail density, with potential interactions among temperature, precipitation, and NDVI. The mean minimum temperature in January, water level, precipitation and NDVI were positively correlated with snail density at lags ranging from 1 to 4 months. These findings could serve as references for relevant authorities to monitor the changing trend of snail density and implement control measures, thereby reducing the occurrence of schistosomiasis.
Collapse
Affiliation(s)
- Jiamin Wang
- Fudan University School of Public Health, Xuhui District, Building 8, 130 Dong'an Road, Shanghai, 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Xuhui District, Building 8, 130 Dong'an Road, Shanghai, 200032, China
- Fudan University Center for Tropical Disease Research, Xuhui District, Building 8, 130 Dong'an Road, Shanghai, 200032, China
| | - Junhui Huang
- Fudan University School of Public Health, Xuhui District, Building 8, 130 Dong'an Road, Shanghai, 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Xuhui District, Building 8, 130 Dong'an Road, Shanghai, 200032, China
- Fudan University Center for Tropical Disease Research, Xuhui District, Building 8, 130 Dong'an Road, Shanghai, 200032, China
| | - Yanfeng Gong
- Fudan University School of Public Health, Xuhui District, Building 8, 130 Dong'an Road, Shanghai, 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Xuhui District, Building 8, 130 Dong'an Road, Shanghai, 200032, China
- Fudan University Center for Tropical Disease Research, Xuhui District, Building 8, 130 Dong'an Road, Shanghai, 200032, China
| | - Ning Xu
- Fudan University School of Public Health, Xuhui District, Building 8, 130 Dong'an Road, Shanghai, 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Xuhui District, Building 8, 130 Dong'an Road, Shanghai, 200032, China
- Fudan University Center for Tropical Disease Research, Xuhui District, Building 8, 130 Dong'an Road, Shanghai, 200032, China
| | - Yu Zhou
- Fudan University School of Public Health, Xuhui District, Building 8, 130 Dong'an Road, Shanghai, 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Xuhui District, Building 8, 130 Dong'an Road, Shanghai, 200032, China
- Fudan University Center for Tropical Disease Research, Xuhui District, Building 8, 130 Dong'an Road, Shanghai, 200032, China
| | - Liyun Zhu
- Fudan University School of Public Health, Xuhui District, Building 8, 130 Dong'an Road, Shanghai, 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Xuhui District, Building 8, 130 Dong'an Road, Shanghai, 200032, China
- Fudan University Center for Tropical Disease Research, Xuhui District, Building 8, 130 Dong'an Road, Shanghai, 200032, China
| | - Liang Shi
- Fudan University School of Public Health, Xuhui District, Building 8, 130 Dong'an Road, Shanghai, 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Xuhui District, Building 8, 130 Dong'an Road, Shanghai, 200032, China
- Fudan University Center for Tropical Disease Research, Xuhui District, Building 8, 130 Dong'an Road, Shanghai, 200032, China
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, 600 Peter Morand Crescent, Ottawa, ON, K1G 5Z3, Canada
| | - Qingwu Jiang
- Fudan University School of Public Health, Xuhui District, Building 8, 130 Dong'an Road, Shanghai, 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Xuhui District, Building 8, 130 Dong'an Road, Shanghai, 200032, China
- Fudan University Center for Tropical Disease Research, Xuhui District, Building 8, 130 Dong'an Road, Shanghai, 200032, China
| | - Yibiao Zhou
- Fudan University School of Public Health, Xuhui District, Building 8, 130 Dong'an Road, Shanghai, 200032, China.
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Xuhui District, Building 8, 130 Dong'an Road, Shanghai, 200032, China.
- Fudan University Center for Tropical Disease Research, Xuhui District, Building 8, 130 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
5
|
Dai S, Wang Z, Cai M, Guo T, Mao S, Yang Y. A multi-omics investigation of the lung injury induced by PM 2.5 at environmental levels via the lung-gut axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172027. [PMID: 38552982 DOI: 10.1016/j.scitotenv.2024.172027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/25/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Long-term exposure to fine particulate matter (PM2.5) posed injury for gastrointestinal and respiratory systems, ascribing with the lung-gut axis. However, the cross-talk mechanisms remain unclear. Here, we attempted to establish the response networks of lung-gut axis in mice exposed to PM2.5 at environmental levels. Male Balb/c mice were exposed to PM2.5 (dose of 0.1, 0.5, and 1.0 mg/kg) collected from Chengdu, China for 10 weeks, through intratracheally instillation, and examined the effect of PM2.5 on lung functions of mice. The changes of lung and gut microbiota and metabolic profiles of mice in different groups were determined. Furthermore, the results of multi-omics were conjointly analyzed to elucidate the primary microbes and the associated metabolites in lung and gut responsible for PM2.5 exposure. Accordingly, the cross-talk network and key pathways between lung-gut axis were established. The results indicated that exposed to PM2.5 0.1 mg/kg induced obvious inflammations in mice lung, while emphysema was observed at 1.0 mg/kg. The levels of metabolites guanosine, hypoxanthine, and hepoxilin B3 increased in the lung might contribute to lung inflammations in exposure groups. For microbiotas in lung, PM2.5 exposure significantly declined the proportions of Halomonas and Lactobacillus. Meanwhile, the metabolites in gut including L-tryptophan, serotonin, and spermidine were up-regulated in exposure groups, which were linked to the decreasing of Oscillospira and Helicobacter in gut. Via lung-gut axis, the activations of pathways including Tryptophan metabolism, ABC transporters, Serotonergic synapse, and Linoleic acid metabolism contributed to the cross-talk between lung and gut tissues of mice mediated by PM2.5. In summary, the microbes including Lactobacillus, Oscillospira, and Parabacteroides, and metabolites including hepoxilin B3, guanosine, hypoxanthine, L-tryptophan, and spermidine were the main drivers. In this lung-gut axis study, we elucidated some pro- and pre-biotics in lung and gut microenvironments contributed to the adverse effects on lung functions induced by PM2.5 exposure.
Collapse
Affiliation(s)
- Shuiping Dai
- National Center for Geriatrics Clinical Medicine Research, Department of Geriatrics and Gerontology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Zhenglu Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Min Cai
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, PR China
| | - Tingting Guo
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Shengqiang Mao
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ying Yang
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu 610041, PR China
| |
Collapse
|
6
|
Imdad S, Kim JH, So B, Jang J, Park J, Lim W, Lee YK, Shin WS, Hillyer T, Kang C. Effect of aerobic exercise and particulate matter exposure duration on the diversity of gut microbiota. Anim Cells Syst (Seoul) 2024; 28:137-151. [PMID: 38601060 PMCID: PMC11005883 DOI: 10.1080/19768354.2024.2338855] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/31/2024] [Indexed: 04/12/2024] Open
Abstract
Inhalation of ambient particulate matter (PM) can disrupt the gut microbiome, while exercise independently influences the gut microbiome by promoting beneficial bacteria. In this study, we analyzed changes in gut microbial diversity and composition in response to combined interventions of PM exposure and aerobic exercise, extending up to 12 weeks. This investigation was conducted using mice, categorized into five groups: control group (Con), exercise group (EXE), exercise group followed by 3-day exposure to PM (EXE + 3-day PM), particulate matter exposure (PM), and PM exposure with concurrent treadmill exercise (PME). Notably, the PM group exhibited markedly lower alpha diversity and richness compared to the Con group and our analysis of beta diversity revealed significant variations among the intervention groups. Members of the Lachnospiraceae family showed significant enhancement in the exercise intervention groups (EXE and PME) compared to the Con and PM groups. The biomarker Lactobacillus, Coriobacteraceae, and Anaerofustis were enriched in the EXE group, while Desulfovibrionaceae, Mucispirillum schaedleri, Lactococcus and Anaeroplasma were highly enriched in the PM group. Differential abundance analysis revealed that Paraprevotella, Bacteroides, and Blautia were less abundant in the 12-week PM exposure group than in the 3-day PM exposure group. Moreover, both the 3-day and 12-week PM exposure groups exhibited a reduced relative abundance of Bacteroides uniformis, SMB53, and Staphylococcus compared to non-PM exposure groups. These findings will help delineate the possible roles and associations of altered microbiota resulting from the studied interventions, paving the way for future mechanistic research.
Collapse
Affiliation(s)
- Saba Imdad
- Laboratory of Molecular Metabolism in Health & Disease, Sport Science Research Institute, Inha University, Incheon, South Korea
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju, South Korea
| | - Jin-Hee Kim
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju, South Korea
| | - Byunghun So
- Laboratory of Molecular Metabolism in Health & Disease, Sport Science Research Institute, Inha University, Incheon, South Korea
| | - Junho Jang
- Laboratory of Molecular Metabolism in Health & Disease, Sport Science Research Institute, Inha University, Incheon, South Korea
| | - Jinhan Park
- Laboratory of Molecular Metabolism in Health & Disease, Sport Science Research Institute, Inha University, Incheon, South Korea
| | - Wonchung Lim
- Department of Sports Medicine, College of Health Science, Cheongju University, Cheongju, South Korea
| | - Yoon-Kwang Lee
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Woo Shik Shin
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Trae Hillyer
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Chounghun Kang
- Laboratory of Molecular Metabolism in Health & Disease, Sport Science Research Institute, Inha University, Incheon, South Korea
- Department of Physical Education, College of Education, Inha University, Incheon, South Korea
| |
Collapse
|
7
|
Zhu X, Xia Y, Wang H, Shi L, Yin H, Gu M, Yan F. PM 2.5 induced neurotoxicity through unbalancing vitamin B12 metabolism by gut microbiota disturbance. Gut Microbes 2023; 15:2267186. [PMID: 37842922 PMCID: PMC10580859 DOI: 10.1080/19490976.2023.2267186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023] Open
Abstract
Fine particulate matter (PM2.5) in the atmosphere is easily accompanied by toxic and harmful substances, causing serious harm to human health, including cognitive impairment. Vitamin B12 (VitB12) is an essential micronutrient that is synthesized by bacteria and contributes to neurotransmitter synthesis as a nutrition and signaling molecule. However, the relationship between VitB12 attenuation of cognitive impairment and intestinal microbiota regulation in PM2.5 exposure has not been elucidated. In this study, we demonstrated that PM2.5 caused behavioral defects and neuronal damage in Caenorhabditis elegans (C. elegans), along with significant gene expression changes in neurotransmitter receptors and a decrease in VitB12 content, causing behavioral defects and neuronal damage in C. elegans. Methylcobalamin (MeCbl), a VitB12 analog, alleviated PM2.5-induced neurotoxicity in C. elegans. Moreover, using in vivo and in vitro models, we discovered that long-term exposure to PM2.5 led to changes in the structure of the gut microbiota, resulting in an imbalance of the VitB12-associated metabolic pathway followed by cognitive impairment. MeCbl supplementation could increase the diversity of the bacteria, reduce harmful substance contents, and restore the concentration of short-chain fatty acids (SCFAs) and neurotransmitters to the level of the control group to some degree. Here, a new target to mitigate the harm caused by PM2.5 was discovered, supplying MeCbl for relieving intestinal and intracellular neurotransmitter disorders. Our results also provide a reference for the use of VitB12 to target the adjustment of the human intestinal microbiota to improve metabolic disorders in people exposed to PM2.5.
Collapse
Affiliation(s)
- Xuan Zhu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People’s Republic of China
- Zhejiang Provincial Key Laboratory of Food Safety, Zhejiang Gongshang University, Hangzhou, China
| | - Yanting Xia
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People’s Republic of China
| | - Huanhuan Wang
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- Laboratory animal center, Hangzhou Normal University, Hangzhou, China
| | - Lihua Shi
- Weifang Elbe Health Food Co. Ltd, Weifang, China
| | - Hongping Yin
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- Laboratory animal center, Hangzhou Normal University, Hangzhou, China
| | - Meier Gu
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
- Laboratory animal center, Hangzhou Normal University, Hangzhou, China
| | - Fujie Yan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|