1
|
Yang Y, Liu W, Zhao Z, Guo K, Wang X, Lou Z, Yang X, Gong L, Wang K, Liu X, Xu H, Liu Q, Zheng B, Jiang X. Genomic insights and epidemiology of mcr-1-Carrying Escherichia albertii isolated from agricultural soil in China. BMC Genomics 2025; 26:344. [PMID: 40188040 PMCID: PMC11972489 DOI: 10.1186/s12864-025-11493-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/17/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Polymyxins are critical in treating multidrug-resistant Gram-negative bacteria infections, yet their overuse has spurred the emergence of polymyxin-resistant pathogens globally. This study aims to analyze the genomic characteristics of the Escherichia albertii strain 6S-65-1 carrying the mcr-1 gene and to investigate the global epidemiology of mcr-1-carrying E. albertii strains. RESULTS In this study, we identified and analyzed a polymyxin-resistant Escherichia albertii strain (6S-65-1) carrying the mcr-1 gene, isolated from agricultural soil in China. Whole-genome sequencing and comparative genomic analyses revealed two chromosomal integrations of the mcr-1 gene within Tn6330 transposon structures, indicating its capacity for horizontal gene transfer. Strain 6S-65-1 also harbors other antimicrobial resistance genes, including tet(A), sul3, and aph (3')-Ia, enhancing its resistance profile. Comparative genomic analysis of E. albertii genomes in the NCBI database revealed that mcr-1-carrying E. albertii strains are geographically restricted to China and Japan, and have been isolated from both animals and humans. Phylogenetic analysis revealed that strain 6S-65-1 was most closely related to a human-derived strain from Japan (SAMD00164101), with both strains carried virulence genes (cdt, paa, and eae) that enable them to form attaching and effacing (A/E) lesions. Among all publicly available ST4619 E. albertii genomes, strain 6S-65-1 is the first to carry the mcr-1 gene. CONCLUSION Our findings offer new insights into the epidemiology and genomic features of mcr-1-carrying E. albertii, underscoring the need for targeted management strategies to curb its spread. These findings underscore the importance of "One Health" approaches to antimicrobial resistance, which require coordinated efforts across human, animal and the environmental health sectors.
Collapse
Affiliation(s)
- Yu Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenhong Liu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zanzan Zhao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kexin Guo
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinrui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zhenghao Lou
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaolu Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Gong
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kun Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaojing Liu
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hao Xu
- State Key Laboratory for Diagnosis and treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiyu Liu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiawei Jiang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
2
|
Chetri S. Escherichia coli: An arduous voyage from commensal to Antibiotic-resistance. Microb Pathog 2025; 198:107173. [PMID: 39608506 DOI: 10.1016/j.micpath.2024.107173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 11/30/2024]
Abstract
Escherichia coli (E. coli), a normal intestinal microbiota is one of the most common pathogen known for infecting urinary tract, wound, lungs, bone marrow, blood system and brain. Irrational and overuse of commercially available antibiotics is the most imperative reason behind the emergence of the life threatening infections caused due to antibiotic resistant pathogens. The World Health Organization (WHO) identified antimicrobial resistance (AMR) as one of the 10 biggest public health threats of our time. This harmless commensal can acquire a range of mobile genetic elements harbouring genes coding for virulence factors becoming highly versatile human pathogens causing severe intestinal and extra intestinal diseases. Although, E. coli has been the most widely studied micro-organism, it never ceases to astound us with its ability to open up new research avenues and reveal cutting-edge survival mechanisms in diverse environments that impact human and surrounding environment. This review aims to summarize and highlight persistent research gaps in the field, including: (i) the transfer of resistant genes among bacterial species in diverse environments, such as those associated with humans and animals; (ii) the development of resistance mechanisms against various classes of antibiotics, including quinolones, tetracyclines, etc., in addition to β-lactams; and (iii) the relationship between resistance and virulence factors for understanding how virulence factors and resistance interact to gain a better grasp of how resistance mechanisms impact an organism's capacity to spread illness and interact with the host's defences. Moreover, this review aims to offer a thorough overview, exploring the history and factors contributing to antimicrobial resistance (AMR), the different reported pathotypes, and their links to virulence in both humans and animals. It will also examine their prevalence in various contexts, including food, environmental, and clinical settings. The objective is to deliver a more informative and current analysis, highlighting the evolution from microbiota (historical context) to sophisticated diseases caused by highly successful pathogens. Developing more potent tactics to counteract antibiotic resistance in E. coli requires filling in these gaps. By bridging these gaps, we can strengthen our capacity to manage and prevent resistance, which will eventually enhance public health and patient outcomes.
Collapse
Affiliation(s)
- Shiela Chetri
- Department of Microbiology, Thassim Beevi Abdul Kader College for Women, Kilakarai, Tamilnadu, India.
| |
Collapse
|
3
|
Feng J, Jia M, Zhuang Y, Xu Z, Chen Y, Fei J, Xia J, Hong L, Zhang J, Wu H, Chen X, Chen M. Prevalence, transmission and genomic epidemiology of mcr-1-positive colistin-resistant Escherichia coli strains isolated from international airplane waste, local resident fecal and wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177556. [PMID: 39547379 DOI: 10.1016/j.scitotenv.2024.177556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
The emergence and dissemination of mcr-1-positive Escherichia coli (MCRPEC) represent a critical public health threat. Here, we conducted a prospective analysis of MCRPEC isolates from wastewater treatment plants (WWTPs), local residents' fecal (LRF), and international airplane waste (IAW) to investigate their genetic characteristics and transmission patterns circulating in human-environment domains. The MCRPEC prevalence was 2.43 % in WWTPs, 1.37 % in IAW and 0.69 % in LRF. MCRPEC showed substantial genetic diversity, encompassing 61 sequence types (primarily ST1011, ST101, and ST2705), 7 plasmid types (primarily IncI2), 8 phylogroups (primarily A and B1), 9 mcr-1-flanked lineages (primarily L5), 6 clusters (primarily C2 and C4), diverse serotypes, and 61.95 % transposon-containing strains. The mcr-1 gene co-existed with 46 antibiotic resistance genes (ARGs) and 19 virulence factor genes (VFGs). Notably, 6 IncI2 plasmids carried the blaCTX-M, IS1380, and mcr-1 genes. MCRPEC from WWTPs harbored a greater number of ARGs (56.95 ± 5.99) but fewer VFGs (15.03 ± 6.40) compared to those from human-associated sources (LRF and IAW). ST1011, ST2705, IncHI2, and L7 were prevalent in WWTP-derived MCRPEC, whereas IncX4 and L3 were more common in human-derived MCRPEC. Genetic features such as ST101, ST48, IncI2, L4, L5, C2, and C4 were simultaneously present in strains from LRF, IAW, and WWTPs. Core genetic analyses also showed genetically similar MCRPEC strains across various geographic locations. The findings underscore the extensive dissemination, strong environmental adaptation, and clonal transmission of MCRPEC across diverse reservoirs, reinforcing the urgent need for coordinated multisectoral surveillance of human and environment interfaces to effectively mitigate further transmission.
Collapse
Affiliation(s)
- Jun Feng
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China.
| | - Min Jia
- Hongkou District Center for Disease Control and Prevention, Shanghai, China
| | - Yuan Zhuang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Zhen Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Yong Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Jiayi Fei
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Jiahui Xia
- Hongkou District Center for Disease Control and Prevention, Shanghai, China
| | - Liang Hong
- Hongkou District Center for Disease Control and Prevention, Shanghai, China
| | - Jing Zhang
- Hongkou District Center for Disease Control and Prevention, Shanghai, China
| | - Huanyu Wu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Xin Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Min Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China.
| |
Collapse
|
4
|
Zhao X, Chen H, Bi W, Shan H, Wang J, Yang Z. Coexistence and genomics characterization of mcr-1 and extended-spectrum-β-lactamase-producing Escherichia coli, an emerging extensively drug-resistant bacteria from sheep in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177016. [PMID: 39426540 DOI: 10.1016/j.scitotenv.2024.177016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
The emergence of pathogens harboring multiple resistance genes poses a great threat to global public health. However, the coexistence of mobile resistance genes that provide resistance to both third-generation cephalosporins and colistin in sheep-origin Escherichia coli has not been previously investigated in China. This study is the first to characterize five E. coli isolates from sheep in Shaanxi province that harbor both Extended-Spectrum β-Lactamase (ESBL) and mcr-1 resistance genes. The isolates were identified and characterized by Illumina sequencing, nanopore sequencing, bioinformatic analysis, conjugation experiments, and antimicrobial susceptibility testing. Genetic analysis revealed that blaCTX-M-55 gene, mediated by the IS26, was located on the IncFIB-IncFIC plasmid, while the mcr-1 gene was located on the IncI2(Delta) plasmid. Notably, two copies of blaCTX-M-55 gene were also identified on the chromosome of one isolate (SX45), facilitated by the ISEcp1 insertion sequence. Additionally, the plasmid pSX23-2 was identified as a complex plasmid derived through homologous recombination of pMG337 from E. coli (MK878890) and pZY-1 from Citrobacter freundii (CP055248). Data mining of publicly available databases revealed that isolates carrying both blaCTX-M-55 and mcr-1 genes have been found in humans, animals, and the environment, indicating the widespread presence of these critical resistance genes across different niches. Antimicrobial susceptibility testing showed that the five isolates were resistant to a nearly all tested antibiotics, except meropenem. Conjugative transfer experiments demonstrated that the IncFIB-IncFIC and IncI2(Delta) plasmids carrying mcr-1 and blaCTX-M-55 were capable of transferring between different sequence types (STs) of sheep-origin E. coli, including ST10, ST162, and ST457. This finding suggests the potential for wide dissemination of these resistance markers among diverse E. coli strains. Overall, the characterization of these ESBL and mcr-1 co-harboring isolates enhances our understanding of the spread of these resistance genes in sheep-origin E. coli. Global surveillance of these isolates, particularly within the One Health framework, is essential to monitor and mitigate the risks posed by the dissemination of these resistance genes across various settings.
Collapse
Affiliation(s)
- Xueliang Zhao
- Key Laboratory for Prevention and Control of Major Ruminant Diseases, Ministry of Agriculture and Rural Affairs (Wester China), College of Veterinary Medicine, Northwest A&F University, Shaanxi Yangling 712100, China; National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hongmei Chen
- College of Food Science and Engineering, Northwest A&F University, Shaanxi Yangling 712100, China
| | - Wenrui Bi
- Key Laboratory for Prevention and Control of Major Ruminant Diseases, Ministry of Agriculture and Rural Affairs (Wester China), College of Veterinary Medicine, Northwest A&F University, Shaanxi Yangling 712100, China
| | - Honghu Shan
- Key Laboratory for Prevention and Control of Major Ruminant Diseases, Ministry of Agriculture and Rural Affairs (Wester China), College of Veterinary Medicine, Northwest A&F University, Shaanxi Yangling 712100, China
| | - Juan Wang
- Key Laboratory for Prevention and Control of Major Ruminant Diseases, Ministry of Agriculture and Rural Affairs (Wester China), College of Veterinary Medicine, Northwest A&F University, Shaanxi Yangling 712100, China.
| | - Zengqi Yang
- Key Laboratory for Prevention and Control of Major Ruminant Diseases, Ministry of Agriculture and Rural Affairs (Wester China), College of Veterinary Medicine, Northwest A&F University, Shaanxi Yangling 712100, China.
| |
Collapse
|
5
|
Dragon D, Jansen W, Dumont H, Wiggers L, Coupeau D, Saulmont M, Taminiau B, Muylkens B, Daube G. Conventionally Reared Wallon Meat Lambs Carry Transiently Multi-Drug-Resistant Escherichia coli with Reduced Sensitivity to Colistin Before Slaughter. Animals (Basel) 2024; 14:3038. [PMID: 39457968 PMCID: PMC11505500 DOI: 10.3390/ani14203038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Major efforts have been made to reduce the use of colistin in livestock since the discovery of the plasmid-borne mobile colistin resistance (mcr) gene in E. coli a decade ago, to curb the burden of its potential transmission to other bacterial species, spread between animals, humans and the environment. This study explored the longitudinal prevalence and characteristics of colistin-resistant and extended-spectrum beta-lactamase-producing (ESBL) E. coli via in vivo fecal and ex vivo carcass swabs from two batches of conventional indoor and organic outdoor Wallon meat sheep from birth to slaughter in 2020 and 2021. Antimicrobial susceptibility testing via broth microdilution revealed that n = 16/109 (15%) E. coli isolates from conventional meat lamb fecal samples had a reduced colistin sensitivity (MIC = 0.5 μg/mL) and thereof, n = 9/109 (8%) were multi-drug-resistant E. coli, while no resistant isolates were recovered from their carcasses. Sequencing revealed causative pmrB genes, indicating that the reduced sensitivity to colistin was not plasmid-borne. While the sample size was small (n = 32), no colistin-resistant and ESBL-producing E. coli were isolated from the organic meat sheep and their carcasses, potentially due to the different husbandry conditions. Prudent and judicious antimicrobial use and strict slaughter hygiene remain imperative for effective risk management to protect consumers in a sustainable One Health approach.
Collapse
Affiliation(s)
- Delphine Dragon
- Integrated Veterinary Research Unit, Faculty of Science, Université de Namur, Rue de Bruxelles 61, 5000 Namur, Belgium (W.J.); (H.D.); (D.C.)
- Department of Food Sciences, Microbiology, Fundamental and Applied Research for Animal & Health (FARAH), Faculty of Veterinary Medicine, Université de Liège, Avenue de Cureghem 10, 4000 Liège, Belgium; (B.T.); (G.D.)
| | - Wiebke Jansen
- Integrated Veterinary Research Unit, Faculty of Science, Université de Namur, Rue de Bruxelles 61, 5000 Namur, Belgium (W.J.); (H.D.); (D.C.)
- Federation of Veterinarians of Europe (FVE), Rue Victor Oudart 7, 1030 Brussels, Belgium
| | - Helene Dumont
- Integrated Veterinary Research Unit, Faculty of Science, Université de Namur, Rue de Bruxelles 61, 5000 Namur, Belgium (W.J.); (H.D.); (D.C.)
| | - Laetitia Wiggers
- Integrated Veterinary Research Unit, Faculty of Science, Université de Namur, Rue de Bruxelles 61, 5000 Namur, Belgium (W.J.); (H.D.); (D.C.)
| | - Damien Coupeau
- Integrated Veterinary Research Unit, Faculty of Science, Université de Namur, Rue de Bruxelles 61, 5000 Namur, Belgium (W.J.); (H.D.); (D.C.)
| | - Marc Saulmont
- Regional Animal Health and Identification Association (ARSIA), 5590 Ciney, Belgium;
| | - Bernard Taminiau
- Department of Food Sciences, Microbiology, Fundamental and Applied Research for Animal & Health (FARAH), Faculty of Veterinary Medicine, Université de Liège, Avenue de Cureghem 10, 4000 Liège, Belgium; (B.T.); (G.D.)
| | - Benoit Muylkens
- Integrated Veterinary Research Unit, Faculty of Science, Université de Namur, Rue de Bruxelles 61, 5000 Namur, Belgium (W.J.); (H.D.); (D.C.)
| | - Georges Daube
- Department of Food Sciences, Microbiology, Fundamental and Applied Research for Animal & Health (FARAH), Faculty of Veterinary Medicine, Université de Liège, Avenue de Cureghem 10, 4000 Liège, Belgium; (B.T.); (G.D.)
| |
Collapse
|
6
|
Liu C, Sun S, Sun Y, Li X, Gu W, Luo Y, Wang N, Wang Q. Antibiotic resistance of Escherichia coli isolated from food and clinical environment in China from 2001 to 2020. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173498. [PMID: 38815827 DOI: 10.1016/j.scitotenv.2024.173498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Antibiotics are widely used in China's aquaculture, agricultural, and clinical settings and can lead to antibiotic resistance in various pathogens. Although the pooled prevalence estimate (PPE) and antibiotic resistance of Escherichia coli (E. coli) in food and clinical settings has been extensively studied, a comprehensive analysis of the published literature is lacking. We conducted a comprehensive search for research indicators for 2001-2020 in eight major Chinese and English literature databases. Antibiotic PPE and resistance trends of 5933 and 29,451 E. coli isolates were screened and analysed in 35 food studies (total 1821) and 62 clinical studies (total 5159). E. coli strains derived from food had the highest antibiotic resistance rate to tetracycline (TET, 71.3 %), followed by trimethoprim-sulfamethoxazole (SXT, 62.5 %) and cefazolin (CFZ, 36.2 %). E. coli strains isolated from clinical environments were highly resistant to piperacillin (PIP, 71.7 %), TET (68.3 %) and CFZ (60.9 %), consistent with foodborne E. coli drug resistance patterns. E. coli strains isolated from food and clinical samples collected in laboratories carry multiple antibiotic resistance genes (ARGs), such as blaTEM, gryA, gryB, sul1, and tetA, making E. coli a reservoir of ARGs. This study highlights the presence of drug-resistant E. coli pathogens and ARGs in food and clinical environments.
Collapse
Affiliation(s)
- Changzhen Liu
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Shaojing Sun
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Yan Sun
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Xuli Li
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Weimin Gu
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Na Wang
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Qing Wang
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan 056038, China.
| |
Collapse
|
7
|
Mahazu S, Prah I, Ota Y, Hayashi T, Suzuki M, Yoshida M, Hoshino Y, Akeda Y, Suzuki T, Ishino T, Ablordey AS, Saito R. Colistin Resistance Mediated by Mcr-3-Related Phosphoethanolamine Transferase Genes in Aeromonas Species Isolated from Aquatic Environments in Avaga and Pakro Communities in the Eastern Region of Ghana. Infect Drug Resist 2024; 17:3011-3023. [PMID: 39050833 PMCID: PMC11268572 DOI: 10.2147/idr.s468000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Purpose Colistin is classified by the World Health Organization (WHO) as a critically important and last-resort antibiotic for the treatment of infections caused by carbapenem-resistant bacteria. However, colistin resistance mediated by chromosomal mutations or plasmid-linked mobilized colistin resistance (mcr) genes has emerged. Methods Thirteen mcr-positive Aeromonas species isolated from water samples collected in Eastern Ghana were analyzed using whole-genome sequencing (WGS). Antimicrobial susceptibility was tested using the broth microdilution method. Resistome analysis was performed in silico using a web-based platform. Results The minimum inhibitory concentration (MIC) of colistin for all except three isolates was >4 µg/mL. Nine new sequence types were identified and whole-genome analysis revealed that the isolates harbored genes (mcr-3-related genes) that code for Lipid A phosphoethanolamine transferases on their chromosomes. BLAST analysis indicated that the amino acid sequences of the mcr-3-related genes detected varied from those previously reported and shared 79.04-99.86% nucleotide sequence identity with publicly available mcr-3 variants and mcr-3-related phosphoethanolamine transferases. Analysis of the genetic context of mcr-3-related genes revealed that the genetic environment surrounding mcr-3-related genes was diverse among the different species of Aeromonas but conserved among isolates of the same species. Mcr-3-related-gene-IS-mcr-3-related-gene segment was identified in three Aeromonas caviae strains. Conclusion The presence of mcr-3-related genes close to insertion elements is important for continuous monitoring to better understand how to control the mobilization and dissemination of antibiotic resistance genes.
Collapse
Affiliation(s)
- Samiratu Mahazu
- Department of Molecular Microbiology, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Parasitology and Tropical Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Isaac Prah
- Department of Molecular Microbiology, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Ota
- Department of Molecular Microbiology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takaya Hayashi
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masato Suzuki
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mitsunori Yoshida
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshihiko Hoshino
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Toshihiko Suzuki
- Department of Bacterial Pathogenesis, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoko Ishino
- Department of Parasitology and Tropical Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Anthony Samuel Ablordey
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Ryoichi Saito
- Department of Molecular Microbiology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
8
|
Sun J, Dai J, Chen J, He Y, Su L, Gong M, Cao M, Wei K, You Y, Liu L, Bai L, Cui S, Chen J, Yang B. Antibiotic susceptibility and genomic analysis of ciprofloxacin-resistant and ESBLs-producing Escherichia coli in vegetables and their irrigation water and growing soil. Int J Food Microbiol 2024; 414:110629. [PMID: 38368793 DOI: 10.1016/j.ijfoodmicro.2024.110629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/20/2024]
Abstract
The rise of antibiotic resistance in Escherichia coli has become a major global public health concern. While there is extensive research on antibiotic-resistant E. coli from human and animal sources, studies on vegetables and their environments are limited. This study investigated the prevalence and characteristics of ciprofloxacin-resistant (CIPR) E. coli in 13 types of edible raw vegetables, along with their irrigation water and soil in Shaanxi, China. Of 349 samples collected (157 vegetables, 59 water, and 133 soil), a total of 48 positive samples were detected, with one CIPRE. coli strain isolated from each sample being selected for further analyses. A striking observation was its high prevalence in irrigation water at 44.1 %, markedly exceeding that in vegetables (12.0 %) and soil (4.5 %). The susceptibility of Forty-eight CIPRE. coli isolates was evaluated using the disc diffusion method for 18 different antibiotics, all these isolates were not only resistant to the tested fluoroquinolones antibiotics (levofloxacin, nalidixic acid), but also displayed a multi-drug resistance (MDR) pattern. Twenty-eight (58.3 %) of 48 CIPRE. coli isolates exhibited extended spectrum β-lactamases (ESBLs) (CIPR-ESBLs) producing phenotype. Subsequently, whole-genome sequencing was performed on these 28 isolates. We identified 12 serotypes and STs each, with O101: H9 (35.7 %, 10/28) and ST10 (21.4 %, 6/28) being the most common. Further classification placed these isolates into five phylogenetic groups: A (57.1 %, 16/28), B1 (32.1 %, 9/28), D (3.6 %, 1/28), B2 (3.6 %,1/28), and F (3.6 %,1/28). Notelly, Identical ST types, serotypes and phylogroups were found in certain CIPR-ESBLs-producing E. coli from both vegetables and adjacent irrigation water. Genomic analysis of the 28 CIPR-ESBLs-producing E. coli isolates unveiled 73 resistance genes, associated with 13 amino acid mutations in resistance-determining regions (QRDRs) and resistance to 12 types of antibiotics. Each isolate was confirmed to carry both ESBLs and fluoroquinolone resistance genes, with the Ser83Ala mutation in GyrA (96.4 %, 27/28) being the most prevalent. A detailed analysis of Mobile Genetic Elements (MGEs) revealed that IncFIB and IncFII plasmid subtypes were most prevalent in 60.7 % and 67.9 % of isolates, respectively, with 75 % containing over 10 insertion sequences (IS) each. Furthermore, we observed that certain ESBL and PMQR genes were located on plasmids or in proximity to insertion sequences. In conclusion, our research highlights the widespread presence of CIPRE. coli in irrigation water and thoroughly examines the genetic characteristics of CIPR-ESBLs-producing E. coli strains, underlining the need for ongoing monitoring and management to reduce multidrug-resistant bacteria in vegetables and their environment.
Collapse
Affiliation(s)
- Jiali Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jinghan Dai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jin Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yuanjie He
- College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Li Su
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Mengqing Gong
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Mengyuan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Kexin Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yi You
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Lisha Liu
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Li Bai
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Jia Chen
- College of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Yangling, Shaanxi 712100, China.
| |
Collapse
|
9
|
Hasib FMY, Magouras I, St-Hilaire S, Paudel S, Kamali M, Lugsomya K, Lam HK, Elsohaby I, Butaye P, Nekouei O. Prevalence and characterization of antimicrobial-resistant Escherichia coli in chicken meat from wet markets in Hong Kong. Front Vet Sci 2024; 11:1340548. [PMID: 38288141 PMCID: PMC10822974 DOI: 10.3389/fvets.2024.1340548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/04/2024] [Indexed: 01/31/2024] Open
Abstract
Given the close contact between animals, animal products, and consumers in wet markets, fresh meat products are considered a potential source and disseminator of antimicrobial-resistant (AMR) bacteria near the end of the food chain. This cross-sectional study was conducted to estimate the prevalence of select AMR-E. coli in fresh chicken meat collected from wet markets in Hong Kong and to determine target genes associated with the observed resistance phenotypes. Following a stratified random sampling design, 180 fresh half-chickens were purchased from 29 wet markets across Hong Kong in 2022 and immediately processed. After incubation, selective isolation was performed for extended-spectrum β-lactamase producing (ESBL), carbapenem-resistant (CRE), and colistin-resistant (CSR) E. coli. The bacterial isolates were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Disc Diffusion was used to determine the susceptibility of ESBL- and CRE-E. coli isolates. The broth microdilution method was used to determine the minimum inhibitory concentration of CSR-E. coli. Targeted resistance genes were then detected by PCR. The prevalence of ESBL-E. coli and CSR-E. coli were estimated at 88.8% (95% CI: 83.4-93.1%) and 6.7% (95% CI: 3.5-11.4%), respectively. No CRE-E. coli isolate was detected. The blaCTX-M-1 gene was the most common β-lactamase group in isolated E. coli (80%), followed by blaTEM (63.7%); no blaSHV gene was detected. Forty-five percent of the isolates had blaTEM and blaCTX-M-1 simultaneously. The mcr-1 gene was detected in all 12 CSR isolates. Of 180 meat samples, 59 were from Mainland China, and 121 were locally sourced. There was no statistically significant difference in the prevalence of ESBL- and CSR-E. coli between the two sources. Our findings can be used to inform food safety risk assessments and set the stage for adopting targeted control and mitigation measures tailored to the local wet markets.
Collapse
Affiliation(s)
- F. M. Yasir Hasib
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chittagong, Bangladesh
| | - Ioannis Magouras
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
- Veterinary Public Health Institute, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Sophie St-Hilaire
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Surya Paudel
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Maedeh Kamali
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Kittitat Lugsomya
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Hoi Kiu Lam
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Ibrahim Elsohaby
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Patrick Butaye
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Omid Nekouei
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
10
|
Szmolka A, Gellért Á, Szemerits D, Rapcsák F, Spisák S, Adorján A. Emergence and Genomic Features of a mcr-1 Escherichia coli from Duck in Hungary. Antibiotics (Basel) 2023; 12:1519. [PMID: 37887221 PMCID: PMC10604428 DOI: 10.3390/antibiotics12101519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
Plasmids carrying high-risk resistance mechanisms in pathogenic E. coli have gained particular attention in veterinary medicine, especially since the discovery of the colistin resistance gene, mcr-1. Here, we provide the first evidence of its emergence and describe the complete mcr-1 plasmid sequence of a multi-resistant avian pathogenic E. coli (APEC) strain from waterfowl in Hungary. Whole-genome sequencing analysis and core-genome MLST were performed to characterize the genome structure of the mcr-1 plasmid and to reveal the phylogenetic relation between the Hungarian duck strain Ec45-2020 and the internationally circulating mcr-1-positive E. coli strains from poultry and humans. Results showed that plasmid pEc45-2020-33kb displayed a high level of genome identity with mcr-1 plasmids of IncX4 type widespread among human, animal and food reservoirs of enteric bacteria of public health. The mcr-1-positive E. coli strain Ec45-2020 belongs to the ST162 genotype, considered as one of the globally disseminated zoonotic genotypes of MDR E. coli. In accordance with international findings, our results underline the importance of continuous surveillance of enteric bacteria with high-risk antimicrobial resistance genotypes, including neglected animals, such as waterfowls, as possible reservoirs for the colistin resistance gene mcr-1.
Collapse
Affiliation(s)
- Ama Szmolka
- HUN-REN Veterinary Medical Research Institute, 1143 Budapest, Hungary; (Á.G.); (F.R.)
| | - Ákos Gellért
- HUN-REN Veterinary Medical Research Institute, 1143 Budapest, Hungary; (Á.G.); (F.R.)
| | - Dóra Szemerits
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, 1143 Budapest, Hungary; (D.S.); (A.A.)
| | - Fanni Rapcsák
- HUN-REN Veterinary Medical Research Institute, 1143 Budapest, Hungary; (Á.G.); (F.R.)
| | - Sándor Spisák
- Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary;
| | - András Adorján
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, 1143 Budapest, Hungary; (D.S.); (A.A.)
| |
Collapse
|