1
|
Feng Y, Sun H, Chen S, Xie W, Jin H, Feng Y, Poinern GEJ, Xue L. Aerobic composting with hydrothermal carbonization aqueous phase conditioning: Stabilized active gaseous nitrogen emissions. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137021. [PMID: 39764962 DOI: 10.1016/j.jhazmat.2024.137021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/25/2024] [Accepted: 12/25/2024] [Indexed: 03/12/2025]
Abstract
The losses of reactive gaseous nitrogen (N), including ammonia (NH3) and nitrous oxide (N2O), represent a pressing environmental issue during composting. However, the impact of hydrothermal carbonization aqueous phase (HAP) on compost gaseous N emissions and the underlying mechanisms remain largely unexplored. Herein, Quercus acutissima leaves-derived HAP and its modified HAP (MHAP) were added to the chicken manure compost at 5 % (w/w) and 10 % (w/w) applied rates to observe changes in NH3 and N2O fluxes, compost properties and bacterial communities. Results showed that high application of HAP significantly decreased compost cumulative NH3 volatilization by 23-26 % compared to the control and MHAP. Compost NH3 and N2O emissions were significantly influenced by compost temperature and inorganic N concentrations. Moreover, HAP and MHAP at high rates reduced the relative abundance of Bacteroidota (5-29 %) and Proteobacteria (11-35 %), compared to those at low rates. Compost environmental factors and bacterial diversity were identified as dominant factors affecting gaseous N emissions, with 54 % and 25 % explanatory rates, respectively. Furthermore, high application rates of HAP are expected to reduce annual NH3 emissions from poultry manure compost by 40000 t. These findings provide insights into rational resource utilization of HAP and gaseous N emission reduction from composting.
Collapse
Affiliation(s)
- Yuanyuan Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment (Luhe), Ministry of Agriculture and Rural Affairs; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Murdoch Applied Innovation Nanotechnology Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia
| | - Haijun Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Sen Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment (Luhe), Ministry of Agriculture and Rural Affairs; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Wenping Xie
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences (CAS), Nanjing 210008, China
| | - Hongmei Jin
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment (Luhe), Ministry of Agriculture and Rural Affairs; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment (Luhe), Ministry of Agriculture and Rural Affairs; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Gerrard Eddy Jai Poinern
- Murdoch Applied Innovation Nanotechnology Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6150, Australia
| | - Lihong Xue
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment (Luhe), Ministry of Agriculture and Rural Affairs; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
2
|
Wang X, Zhang D, Wang F, Zheng X, Yang X, Zeng J, Yi W. Effects of biogas slurry on hydrothermal carbonization of digestate: Synergistic valorization of hydrochars and aqueous phase. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121317. [PMID: 38833919 DOI: 10.1016/j.jenvman.2024.121317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/29/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
In this study, livestock manure digestate (LMD) was used as feedstock for hydrothermal carbonization (HTC) at different temperature (180-260 °C) and residence time (0-4 h). Nutrient flow and distribution during the HTC process were evaluated by comparing the effects of livestock manure biogas slurry (LBS) and ultrapure water (UW) to determine the optimal reaction conditions for the synergistic production and application of hydrochars (HC) and aqueous phases (AP). Compared with UW, the HC yields derived from LBS as solvent were increased by 27.05-38.24% under the same conditions. The C content, high heating value (HHV), and energy densification of HC obtained from LMD and UW were higher than those obtained from LMD and LBS, and the ash content was lower. While, LBS circumstance improved the porosity, N content and some trace elements e.g. Ca, Fe and Mg in HC that showed excellent fertility potential. In addition, the recovery rate of K, TOC, NH4+-N, and TN concentrations in AP were significantly higher in the LBS circumstance than in UW. The results show that the addition of UW is more favorable for fuel generation, and the HC obtained from LMD and UW at 220 °C has the potential to be used as a fuel. Whereas, the addition of LBS enhanced the potential of HC and AP for agricultural applications simultaneously. It is recommended to use HC and AP obtained from LMD and LBS at 240 °C for using as fertilizer.
Collapse
Affiliation(s)
- Xia Wang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, China; Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, Shandong, 255049, China
| | - Deli Zhang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, China; Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, Shandong, 255049, China
| | - Fang Wang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, China; Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, Shandong, 255049, China.
| | - Xiaojuan Zheng
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, China; Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, Shandong, 255049, China
| | - Xizhen Yang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, China; Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, Shandong, 255049, China
| | - Jianfei Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Weiming Yi
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, 255049, China; Shandong Research Center of Engineering and Technology for Clean Energy, Zibo, Shandong, 255049, China
| |
Collapse
|
3
|
Jalilian M, Bissessur R, Ahmed M, Hsiao A, He QS, Hu Y. A review: Hydrochar as potential adsorbents for wastewater treatment and CO 2 adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169823. [PMID: 38199358 DOI: 10.1016/j.scitotenv.2023.169823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/15/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
To valorize the biomass and organic waste, hydrothermal carbonization (HTC) stands out as a highly efficient and promising pathway given its intrinsic advantages over other thermochemical processes. Hydrochar, as the main product obtained from HTC, is widely applied as a fuel source and soil conditioner. Aside from these applications, hydrochar can be either directly used or modified as bio-adsorbents for environmental remediation. This potential arises from its tunable surface chemistry and its suitability to act as a precursor for activated or engineered carbon. In view of the importance of this topic, this review offers a thorough examination of the research progress for using hydrochar and its modified forms to remove organic dyes (cationic and anionic dyes), heavy metals, herbicides/pesticides, pharmaceuticals, and CO2. The review also sheds light on the fundamental chemistry involved in HTC of biomass and the major analytical techniques applied for understanding surface chemistry of hydrochar and modified hydrochar. The knowledge gaps and potential hurdles are identified to highlight the challenges and prospects of this research field with a summary of the key findings from this review. Overall, this article provides valuable insights and directives and pinpoints the areas meriting further investigation in the application potential of hydrochar in wastewater management and CO2 capture.
Collapse
Affiliation(s)
- Milad Jalilian
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Rabin Bissessur
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Marya Ahmed
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada; Department of Chemistry, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Amy Hsiao
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Quan Sophia He
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada.
| | - Yulin Hu
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|