1
|
Zweigle J, Tisler S, Bevilacqua M, Tomasi G, Nielsen NJ, Gawlitta N, Lübeck JS, Smilde AK, Christensen JH. Prioritization strategies for non-target screening in environmental samples by chromatography - High-resolution mass spectrometry: A tutorial. J Chromatogr A 2025; 1751:465944. [PMID: 40203635 DOI: 10.1016/j.chroma.2025.465944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
Non-target screening (NTS) using chromatography coupled to high-resolution mass spectrometry (HRMS), has become fundamental for detecting and prioritizing chemicals of emerging concern (CECs) in complex environmental matrices. The vast number of generated features (m/z, retention time, and intensity) necessitate effective prioritization strategies to identify environmentally and toxicologically relevant CECs. Since compound identification remains a major bottleneck in NTS, prioritization is critical to focus identification efforts where they matter most. This tutorial presents seven prioritization strategies: (1) Target and suspect screening for identifying known or suspected compounds using reference libraries. (2) Data quality filtering to apply quality control measures to reduce noise and the number of false positives. (3) Chemistry-driven prioritization using HRMS data properties to prioritize specific compound classes (e.g., halogenated substances, transformation products). (4) Process-driven - using spatial, temporal, or process-based comparisons (pre- and post-technical processes) to identify key features. (5) Effect-Directed Analysis (EDA) and Virtual Effect-Directed Analysis (vEDA) prioritization to link chemical features to biological effects. (6) Prediction-based prioritization such as quantitative structure-property relationships (QSPR) and machine learning to estimate risk or concentration levels, and (7) Pixel- or tile-based analysis where the chromatographic image (2D data) is used to pin-point regions of interest or for comparison of larger sample sets. By integrating these prioritization strategies, this tutorial provides a structured foundation to evaluate both identified and unidentified features, prioritize high-risk compounds, and advance environmental risk assessment and regulatory decision-making.
Collapse
Affiliation(s)
- Jonathan Zweigle
- Analytical Chemistry Group, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Selina Tisler
- Analytical Chemistry Group, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Marta Bevilacqua
- Analytical Chemistry Group, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Giorgio Tomasi
- Analytical Chemistry Group, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Nikoline J Nielsen
- Analytical Chemistry Group, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Nadine Gawlitta
- Analytical Chemistry Group, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Josephine S Lübeck
- Analytical Chemistry Group, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Age K Smilde
- Analytical Chemistry Group, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jan H Christensen
- Analytical Chemistry Group, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
2
|
Tisler S, Kilpinen K, Devers J, Castro M, Jørgensen MB, Mandava G, Lundqvist J, Cedergreen N, Christensen JH. Mapping Emerging Contaminants in Wastewater Effluents through Multichromatographic Platform Analysis and Source Correlations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5766-5774. [PMID: 40072327 DOI: 10.1021/acs.est.5c01139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
This study explores the correlation of contaminants of emerging concern (CECs) in wastewater effluents using liquid chromatography (LC), supercritical fluid chromatography (SFC), and comprehensive two-dimensional gas chromatography (GC × GC) with derivatization, all coupled to high-resolution mass spectrometry (HRMS). Over 300 compounds, including frequently overlooked highly polar and nonpharmaceutical CECs, were identified. Monitoring programs mainly focus on reducing variability and assessing pollution in wastewater treatment plant (WWTP) effluents under dry weather conditions, often neglecting wet-weather discharges. In this study, correlation analysis revealed the complex impact of rainfall on wastewater effluent composition, identifying clusters of CECs introduced through rain runoff and discharges from retention basins. Rain events affected the removal efficiency of easily degradable CECs, with variations between WWTPs. Persistent compounds such as PFAS demonstrated strong intragroup correlations, reflecting their common sources and environmental stability. These findings provide valuable insights into the diverse profiles of CECs in wastewater and demonstrate the potential of correlation-based approaches to optimize treatment strategies to the specific challenges of individual WWTPs.
Collapse
Affiliation(s)
- Selina Tisler
- Analytical Chemistry Group, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Kristoffer Kilpinen
- Analytical Chemistry Group, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Eurofins Environment Denmark, Ladelundvej 85, DK-6600 Vejen, Denmark
| | - Jason Devers
- Analytical Chemistry Group, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Mafalda Castro
- Environmental Toxicology, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Mathias B Jørgensen
- Analytical Chemistry Group, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Geeta Mandava
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden
| | - Johan Lundqvist
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden
| | - Nina Cedergreen
- Environmental Toxicology, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Jan H Christensen
- Analytical Chemistry Group, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
3
|
Schorr J, Jud F, la Cecilia D, Beck B, Longree P, Singer H, Hollender J. Tracing pesticide dynamics: High resolution offers new insights to karst groundwater quality. WATER RESEARCH 2024; 267:122412. [PMID: 39306931 DOI: 10.1016/j.watres.2024.122412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 11/28/2024]
Abstract
Generally, karst aquifers and springs are highly susceptible to contamination due to the high permeability and, therefore, groundwater flow velocities. The often thin soil cover, accompanied by dolines, can lead to fast infiltration of precipitation water loaded with mobilized contaminants such as pesticides and their transformation products. To date, continuous, temporally highly resolved in-situ monitoring to decipher concentration dynamics for a broad range of pesticides is missing. Therefore, a transportable HPLC-HRMS/MS system (MS2field) was positioned at two karst study sites in the Swiss Jura. Water samples were collected and analyzed for pesticides and their transformation products in-situ every 20 min for 6 weeks in 2021 and 8 weeks in 2022. During the spraying season in 2021, six rain events at site 1 and three at site 2 in 2022 were captured. Concurrently, the water quality parameters electrical conductivity, pH, nitrate, turbidity, and water level, were monitored continuously at high temporal resolution. Further, bacterial cell counts were monitored via online flow cytometry. In 2021, several pesticides and pesticide transformation products were detected in peak concentrations after rain events, of which metamitron showed the highest concentration of up to 1000 ng/L. In one rain event, the Swiss federal and EU drinking water limit of 100 ng/L was exceeded for up to 38 h. Compared with highly frequent MS2field samples collected every 20 min, 42-hours composite samples severely underestimated peak concentrations for all compounds, especially for labile ones. Therefore, it was demonstrated that exceedences of the regulatory limit would have been missed if just composite sampling would have been conducted. Peak concentrations of pesticides coincided with peaks in nitrate concentration and bacterial cell counts following rain events. The correlation analysis showed strong correlations between the three analyzed contaminants (pesticides, nitrate and bacteria), and the proxy parameters electrical conductivity, and pH. The investigation of a second spring revealed similar dynamics indicating that these can be expected in other karst aquifers as well.
Collapse
Affiliation(s)
- Johannes Schorr
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, Universitätstrasse 16, ETH Zürich, 8092 Zürich, Switzerland
| | - Franziska Jud
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Daniele la Cecilia
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland; Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131 Padova, PD, Italy
| | - Birgit Beck
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Philipp Longree
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Heinz Singer
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Juliane Hollender
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, Universitätstrasse 16, ETH Zürich, 8092 Zürich, Switzerland.
| |
Collapse
|
4
|
Joerss H, Freeling F, van Leeuwen S, Hollender J, Liu X, Nödler K, Wang Z, Yu B, Zahn D, Sigmund G. Pesticides can be a substantial source of trifluoroacetate (TFA) to water resources. ENVIRONMENT INTERNATIONAL 2024; 193:109061. [PMID: 39442319 DOI: 10.1016/j.envint.2024.109061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/02/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Through the application of C-CF3-containing plant protection products (PPP) in agriculture, a substantial quantity of trifluoroacetate (TFA) can be formed and emitted. We here present estimations of TFA formation potentials from PPP across three important economical regions, namely Europe, the United States of America and China. PPP with TFA formation potential vary in type and use profile across those regions, but can be found throughout, with the estimated maximum TFA emissions ranging from 0 to 83 kg/km2 per year. Therein, some PPP are only used for specific crops in specific regions, while others are used more widely. The importance of PPP as a TFA source is supported by the field data from a region in Germany, which revealed a significant increase in TFA groundwater concentrations with agriculture compared to other land uses. Substance-specific TFA formation rates and field studies are necessary to characterize the formation of TFA from precursors under environmental conditions and to rank and prioritize PPP of concern for potential (regulatory) action.
Collapse
Affiliation(s)
- Hanna Joerss
- Organic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany.
| | - Finnian Freeling
- TZW: DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruher Str. 84, 76139, Karlsruhe, Germany
| | - Stefan van Leeuwen
- Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands; Wageningen Food Safety Research (WFSR), Wageningen University & Research, PO Box 230 6708 WB Wageningen, The Netherlands
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstr. 133, 8600, Switzerland; Dübendorf and Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Karsten Nödler
- TZW: DVGW-Technologiezentrum Wasser (German Water Centre), Karlsruher Str. 84, 76139, Karlsruhe, Germany
| | - Zhanyun Wang
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, 9014 St. Gallen, Switzerland
| | - Bochi Yu
- Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands; Dübendorf and Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Daniel Zahn
- Department of Environmental Analytical Chemistry, Helmholtz-Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany
| | - Gabriel Sigmund
- Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
5
|
Zahn D, Arp HPH, Fenner K, Georgi A, Hafner J, Hale SE, Hollender J, Letzel T, Schymanski EL, Sigmund G, Reemtsma T. Should Transformation Products Change the Way We Manage Chemicals? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7710-7718. [PMID: 38656189 PMCID: PMC11080041 DOI: 10.1021/acs.est.4c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
When chemical pollutants enter the environment, they can undergo diverse transformation processes, forming a wide range of transformation products (TPs), some of them benign and others more harmful than their precursors. To date, the majority of TPs remain largely unrecognized and unregulated, particularly as TPs are generally not part of routine chemical risk or hazard assessment. Since many TPs formed from oxidative processes are more polar than their precursors, they may be especially relevant in the context of persistent, mobile, and toxic (PMT) and very persistent and very mobile (vPvM) substances, which are two new hazard classes that have recently been established on a European level. We highlight herein that as a result, TPs deserve more attention in research, chemicals regulation, and chemicals management. This perspective summarizes the main challenges preventing a better integration of TPs in these areas: (1) the lack of reliable high-throughput TP identification methods, (2) uncertainties in TP prediction, (3) inadequately considered TP formation during (advanced) water treatment, and (4) insufficient integration and harmonization of TPs in most regulatory frameworks. A way forward to tackle these challenges and integrate TPs into chemical management is proposed.
Collapse
Affiliation(s)
- Daniel Zahn
- Helmholtz
Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Hans Peter H. Arp
- Norwegian
Geotechnical Institute (NGI), P.O. Box 3930, Ullevål Stadion, 0806 Oslo, Norway
- Department
of Chemistry, Norwegian University of Science
and Technology (NTNU), N-7491 Trondheim, Norway
| | - Kathrin Fenner
- Swiss
Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Zürich, Switzerland
- Department
of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| | - Anett Georgi
- Helmholtz
Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Jasmin Hafner
- Swiss
Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Zürich, Switzerland
- Department
of Chemistry, University of Zürich, 8057 Zürich, Switzerland
| | - Sarah E. Hale
- TZW: DVGW
Water Technology Center, Karlsruher Str. 84, 76139 Karlsruhe, Germany
| | - Juliane Hollender
- Swiss
Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Zürich, Switzerland
- ETH
Zurich, Institute of Biogeochemistry and
Pollutant Dynamics, Zürich 8092, Switzerland
| | - Thomas Letzel
- AFIN-TS
GmbH (Analytisches Forschungsinstitut für Non-Target Screening), Am Mittleren Moos 48, 86167 Augsburg, Germany
| | - Emma L. Schymanski
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, 6 avenue
du Swing, L-4367 Belvaux, Luxembourg
| | - Gabriel Sigmund
- Environmental
Technology, Wageningen University &
Research, 6700 AA Wageningen, The Netherlands
| | - Thorsten Reemtsma
- Helmholtz
Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
- University of Leipzig, Linnéstrasse 3, 04103 Leipzig, Germany
| |
Collapse
|
6
|
Zhang S, Chen J, Wang Z, Chen C, Chen A, Jing Q, Liu J. Dynamic Source Distribution and Emission Inventory of a Persistent, Mobile, and Toxic (PMT) Substance, Melamine, in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14694-14706. [PMID: 37734035 PMCID: PMC11017250 DOI: 10.1021/acs.est.3c02945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/21/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
Persistent, mobile, and toxic (PMT) substances are affecting the safety of drinking water and are threatening the environment and human health. Many PMT substances are used in industrial processing or consumer products, but their sources and emissions mostly remain unclear. This study presents a long-term source distribution and emission estimation of melamine, a high-production-volume PMT substance of emerging global concern. The results indicate that in China, approximately 1858.7 kilotonnes (kt) of melamine were released into the water (∼58.9%), air (∼27.0%), and soil systems (∼14.1%) between 1995 and 2020, mainly from its production and use in the decorative panels, textiles, and paper industries. The textile and paper industries have the highest emission-to-consumption ratios, with more than 90% emissions per unit consumption. Sewage treatment plants are the largest source of melamine in the environment for the time being, but in-use products and their wastes will serve as significant melamine sources in the future. The study prompts priority action to control the risk of PMT substances internationally.
Collapse
Affiliation(s)
- Shaoxuan Zhang
- State
Key Joint Laboratory for Environmental Simulation and Pollution Control,
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jiazhe Chen
- State
Key Joint Laboratory for Environmental Simulation and Pollution Control,
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhanyun Wang
- Empa
− Swiss Federal Laboratories for Materials Science and Technology,
Technology and Society Laboratory, 9014 St. Gallen, Switzerland
| | - Chengkang Chen
- State
Key Joint Laboratory for Environmental Simulation and Pollution Control,
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Anna Chen
- State
Key Joint Laboratory for Environmental Simulation and Pollution Control,
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Qiaonan Jing
- State
Key Joint Laboratory for Environmental Simulation and Pollution Control,
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jianguo Liu
- State
Key Joint Laboratory for Environmental Simulation and Pollution Control,
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|