1
|
Zhu N, Li Z, Yu Y, Liu Z, Liang X, Wang W, Zhao J. Fate of microplastics in soil-water systems: View from free radicals driven by global climate change. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 295:118138. [PMID: 40185036 DOI: 10.1016/j.ecoenv.2025.118138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Microplastics are ubiquitously distributed and persistently present in soil-water systems, posing potential ecological and health risks worldwide. Free radicals are highly reactive in soil-water systems, particularly at soil-water-air interface. The dynamic changes of free radicals sensitive to environmental conditions may greatly impact the fate of microplastics. However, the pathways, reaction kinetics, or transformation products of microplastic degradation by free radicals in soil-water systems remains unclear. Climate change alters the physical and chemical environment of soil-water systems and this transformation can directly affect the degradation of microplastics, or indirectly influence it by altering the generation and species of free radicals. Here, we summarized and analyzed the impact of fluctuations in free radicals (such as superoxide radicals, hydrogen peroxide, peroxyl radicals, and hydroxyl radicals) in soil-water systems on the degradation of microplastics and their derivants. We also discussed how changes in free radicals driven by climate change affect the fate of microplastics. By integrating aspects such as climate change, free radical chemistry, and microplastic pollution, this work delineates the critical issues of microplastic pollution exacerbated by environmental condition changes. In response to the existing challenges and deficiencies in current research, feasible countermeasures are proposed. This work offers valuable insights for future research on predicting and controlling ecotoxicity and health risks caused by microplastics associated with global climate change.
Collapse
Affiliation(s)
- Nali Zhu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhanming Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Yue Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Ziyin Liu
- College of Environmental & Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Xujun Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 13, Shaanxi 712100, China
| | - Wei Wang
- College of Environmental & Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jiating Zhao
- College of Environmental & Resource Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Prajapati D, Jabborova D, Saharan BS, Singh N, Patani A, Singh S, Joshi C. Bionanotechnology: A Paradigm for Advancing Environmental Sustainability. Indian J Microbiol 2025; 65:306-332. [PMID: 40371027 PMCID: PMC12069183 DOI: 10.1007/s12088-024-01389-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/28/2024] [Indexed: 05/16/2025] Open
Abstract
The urgent need for innovative solutions to global environmental challenges has driven the convergence of biology and nanotechnology, resulting in the emergence of bionanotechnology as a transformative force. This comprehensive review paper explores the fundamental principles, applications, benefits, and potential risks associated with harnessing bionanotechnology to advance environmental sustainability. Beginning with an elucidation of the fundamental concepts underlying bionanotechnology, this paper establishes the synergy between biological systems and nanomaterials. The unique properties of nanomaterials, coupled with the adaptability of biological processes, form the foundation for a diverse array of real-world applications. Focusing on applications, the paper highlights how bionanotechnology addresses critical environmental issues. It showcases case studies that exemplify its impact on water purification, air quality improvement, waste management, renewable energy production, and more. These case studies underscore the tangible benefits and efficacy of bionanotechnology in tackling complex challenges. However, as the potential of bionanotechnology is harnessed, it is crucial to navigate potential ecological risks. The paper emphasizes the importance of ecotoxicological considerations, discussing how nanomaterials interact with ecosystems and organisms. Ethical and responsible development of bionanotechnology, informed by these considerations, ensures that its benefits are maximized while minimizing potential harm. In conclusion, this review paper underscores bionanotechnology's potential to revolutionize environmental sustainability. By fusing the power of nanomaterials and biology, bionanotechnology offers a holistic approach to address pressing global challenges. While celebrating its transformative promise, the paper emphasizes the need for a balanced approach that safeguards environmental health. As society looks towards a more sustainable future, bionanotechnology stands as a pivotal paradigm for shaping an environmentally conscious world.
Collapse
Affiliation(s)
- Dharmendra Prajapati
- Smt.S.S.Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat 384315 India
| | - Dilfuza Jabborova
- Institute of Genetics and Plant Experimental Biology, Uzbekistan Academy of Sciences, 111208 Kibray, Uzbekistan
| | | | - Namita Singh
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001 India
| | - Anil Patani
- Smt.S.S.Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat 384315 India
| | - Sachidanand Singh
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat India
| | - Chinmayi Joshi
- Smt.S.S.Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat 384315 India
| |
Collapse
|
3
|
Nawaz F, Islam ZU, Ghori SA, Bahadur A, Ullah H, Ahmad M, Khan GU. Microplastic and nanoplastic pollution: Assessing translocation, impact, and mitigation strategies in marine ecosystems. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70032. [PMID: 39927485 DOI: 10.1002/wer.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/13/2024] [Accepted: 01/21/2025] [Indexed: 02/11/2025]
Abstract
The widespread presence of plastic debris in marine ecosystems was first highlighted as a serious concern in the United Nations Convention on the Law of the Sea (UNCLOS) and the 1972 London Convention. This realization identified plastic pollution as one of the major global environmental issues. Majorities of plastic debris are neither recycled nor incinerated, as a result, it eventually makes its way into lakes, rivers, and oceans. Analysis of water and sediment worldwide indicates that microplastics and nanoplastic are ubiquitous in soils, freshwater, and marine ecosystems. Microplastic and nanoplastics are distributed throughout marine environments via processes such as biofouling and chemical leaching, contaminating both pelagic and benthic species. Despite growing recognition of the hazards posed by microplastics and nanoplastics, regulatory efforts remain hampered by limited understanding of their broader ecological impacts, particularly how diverse factors translate into population declines and ecosystem disruptions. This review examines the pathways of microplastic and nanoplastic pollution, their interactions with other environmental stressors such as climate change and chemical pollution, and their effects on marine food webs. The review highlights the urgent need for further research into the behavior and fate of nanoplastics, which are the degradation product of microplastics, owing to their nano size they pose additional risks, unique properties, and potential for widespread ecological impacts. Studies have demonstrated that smaller microplastics and nanoplastics, particularly nanoplastics, are more toxic than larger microplastics. Additionally, microplastics and nanoplastics serve as vectors for contaminants such as heavy metals, exacerbating their toxicity. They also translocate through marine food chains, posing potential health risks. While evidence of their impact continues to grow, the chronic toxicity of microplastics and nanoplastics remains poorly understood, emphasizing the need for further research, particularly at the cellular level, to fully understand their effects on marine ecosystems and human health. This review also concludes with a call for standardized measurement methods, effective mitigation strategies, and enhanced international cooperation to combat this escalating threat. Future research should prioritize the complex interactions between microplastics and nanoplastics, other pollutants, and marine ecosystems, with the ultimate goal of developing holistic approaches to manage and mitigate the impact of plastic pollution. PRACTITIONER POINTS: Microplastic/nanoplastic translocate through marine food webs, affecting species and human health. Nanoplastics are more toxic than microplastics, exacerbating environmental risks. Nanoplastic aggregation influences their distribution and ecological interactions. Future research should focus on nanoplastic behavior, transport, and toxicity.
Collapse
Affiliation(s)
- Faheem Nawaz
- Department of Environmental Science, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Zia Ul Islam
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Sadaf Aslam Ghori
- Department of Environmental Science, Sardar Bahadur Khan Womens University, Quetta, Pakistan
| | - Anila Bahadur
- Department of Environmental Science, Sardar Bahadur Khan Womens University, Quetta, Pakistan
| | - Hamid Ullah
- Department of Chemistry, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Maqsood Ahmad
- Department of Environmental Science, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Ghulam Ullah Khan
- Department of Chemical Engineering, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| |
Collapse
|
4
|
Kasa VP, Brahmandam AKSV, Samal B, Cheela VRS, Dubey BK, Pathak K. Assessment of coastal litter trends in tourist vs. non-tourist beaches: A case study from Indian coastal smart city. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178339. [PMID: 39754956 DOI: 10.1016/j.scitotenv.2024.178339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
Coastal ecosystems are increasingly threatened by the accumulation of marine litter globally. Limited data availability along India's eastern coast hinders targeted mitigation efforts. This study assesses coastal litter along Visakhapatnam, a smart city on India's eastern coast, using the NOAA shoreline debris protocol. Litter assessments at 12 sites before and after the monsoon season revealed high mean litter densities (2.66 ± 0.31 items m-2 before monsoon, 2.03 ± 0.29 items m-2 after monsoon), exceeding the global average by twofold and the national average by five-fold. The tourist beaches saw a 63 % litter reduction after monsoon due to the implementation of better waste management practices, while non-tourist beaches saw a 16 % increase, highlighting disparities in waste management practices. Plastic comprised 86 % of litter, exceeding the global mean proportion (85 %) in marine litter. Alarmingly, 50 % of tourist beaches and all non-tourist beaches were classified as "extremely dirty" by the Clean Coast Index. Land-based influx through stormwater drains was identified as the primary source of litter. This study provides critical baseline data for India's eastern coast, emphasizing the urgent need for targeted interventions, including improved stormwater management and community engagement, to mitigate the escalating marine litter crisis. Further, the findings and recommendations provide valuable insights for managing plastic pollution in coastal cities with similar characteristics, particularly those influenced by monsoons and tourism.
Collapse
Affiliation(s)
- Vara Prasad Kasa
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Anjani Kumar S V Brahmandam
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Biswajit Samal
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | - Brajesh Kumar Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Khanindra Pathak
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; Department of Mining Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
5
|
Rashid E, Hussain SM, Ali S, Sarker PK, Farah MA. Investigating the toxicity of polylactic acid microplastics on the health and physiology of freshwater fish, Cirrhinus mrigala. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:1210-1221. [PMID: 39356372 DOI: 10.1007/s10646-024-02813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 10/03/2024]
Abstract
The widespread presence of microplastics (MPs) in aquatic ecosystems has raised growing concerns among ecotoxicologists regarding their potential toxicity. This study explored the impacts of polylactic acid (PLA) MPs on the physiology and health of freshwater fish, Cirrhinus mrigala, by dietary exposure for 90 days. The experiment consisted of six groups: five treatment groups (0.5%, 1%, 1.5%, 2%, and 2.5% PLA-MP) and a control group (0% PLA-MP). Each group was comprised of fifteen fish, and the experiment was replicated three times. The exposure severity of PLA-MPs varied from low to high, with treatment levels ranging from 0.5% to 2.5% PLA-MPs, relative to the control group. This exposure significantly affected their growth performance. Additionally, the apparent digestibility of the SFM-based diet decreased with increasing PLA-MPs concentration. Exposure to PLA-MPs induced considerable changes in body composition, characterized by increased moisture and crude fat content and decreased ash content and crude protein. The blood profile, including MCHC, RBCs, Hb, PLT and PCV exhibited significant declines in the high treatment group (2.5% PLA-MPs), while MCH, WBCs and MCV showed notable increases. Furthermore, histopathological examination of the intestine revealed an increase in abnormalities in the intestine at 2.5% PLA-MPs level. The high treatment group (2.5% PLA-MPs) showed the lowest mineral content in the fish muscles. In summary, dietary exposure to PLA-MPs led to alterations in overall body performance across the treatment groups, ranging from low to high severity levels.
Collapse
Affiliation(s)
- Eram Rashid
- Fish Nutrition Laboratory, Department of Zoology, Government College University, Faisalabad, Punjab, 38000, Pakistan
| | - Syed Makhdoom Hussain
- Fish Nutrition Laboratory, Department of Zoology, Government College University, Faisalabad, Punjab, 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, Punjab, 38000, Pakistan.
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| | - Pallab K Sarker
- Environmental Studies Department, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
6
|
Fraissinet S, Arduini D, Martines A, De Benedetto GE, Malitesta C, Giangrande A, Rossi S. Seasonal occurrence and distribution of microplastics in four different benthic suspension feeders from an Integrated Multi-Trophic Aquaculture (IMTA) facility: A bioremediation perspective. MARINE POLLUTION BULLETIN 2024; 207:116811. [PMID: 39121801 DOI: 10.1016/j.marpolbul.2024.116811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Microplastics (MPs) are dangerous and ubiquitous in the environment. The urgency to contrast plastic pollution is prompting the scientific community to offer new proposals. Recently, bioremediation using filter feeders is gaining consent as a nature-based solution. Herein four filter feeders (Mytilus galloprovincialis Lamarck, 1819, Sabella spallanzanii Gmelin, 1791, Phallusia mammillata Cuvier, 1815, Paraleucilla magna Klautau, Monteiro & Borojevic, 2004), studied in a previous laboratory experiment as MPs bioremediators, are evaluated in field conditions within 1-year. These organisms are part of an established fouling community growing on eco-friendly ropes in an Integrated Multi-Trophic Aquaculture (IMTA) in the Mar Grande of Taranto. After digesting the animal tissue, the MPs content was quantified by optical microscopy and spectroscopically characterized in the four seasons: highest values were measured in Autumn and lowest in Spring. M. galloprovincialis and P. mammillata were the most contaminated, but S. spallanzanii removed more MPs, due to its high density on the ropes. The whole community removed 3.15 × 107 MPs/season, with the amount of microfibers corresponding to a bottle cap/season.
Collapse
Affiliation(s)
- Silvia Fraissinet
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy.
| | - Daniele Arduini
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy; CoNISMa Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy
| | - Alessandra Martines
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
| | - Giuseppe Egidio De Benedetto
- Laboratory of Analytic and Isotopic Mass Spectrometry, Department of Cultural Heritage, University of Salento, Lecce, Italy
| | - Cosimino Malitesta
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy
| | - Adriana Giangrande
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy; CoNISMa Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy
| | - Sergio Rossi
- Department of Biological and Environmental Science and Technology, University of Salento, Lecce, Italy; CoNISMa Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy; Institute of Marine Sciences (LABOMAR), Federal University of Ceará, Av. Abolicao 230, Fortaleza 60440-900, Brazil
| |
Collapse
|
7
|
Gao S, Zhang S, Feng Z, Lu J, Fu G, Yu W. The ecological risk and fate of microplastics in the environmental matrices of marine ranching area in coastal water. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134570. [PMID: 38772105 DOI: 10.1016/j.jhazmat.2024.134570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024]
Abstract
The debate surrounding "source" and "sink" of microplastics (MPs) in coastal water has persisted for decades. While the transportation of MPs is influenced by surface runoff and currents, the precise transport patterns remain inadequately defined. In this study, the typical coastal habitat - marine ranching in Haizhou Bay (Jiangsu Province, China) were selected as a case study to assess the ecological risk of MPs. An enhanced framework was employed to assess the entire community characteristics of MPs in various environmental compartments, including surface water (SW), middle water (MW), bottom water (BW), sea bottom sediment (SS), and intertidal sediment (IS). The results of the assessment showed a low risk in the water column and a high risk in the sediment. PERMANOVA based on size and polymer of MPs revealed significant differences between IS and other compartments (SW, MW, BW, and SS) (P < 0.001). The co-occurrence network analysis for MP size indicated that most sites occupied central positions, while the analysis for MP polymer suggested that sites near the marine ranching area held more central positions, with sites in MW, BW, and SS being somewhat related to IS. Generalized additive model (GAM) demonstrated that MP concentration in the water correlated with Chla and nutrients, whereas MPs in sediment exhibited greater susceptibility to dissolved oxygen (DO) and salinity. We believe that except for the natural sedimentation and re-suspension of MPs in the vertical direction, MPs in bottom water may migrate to the surface water due to upwelling mediated by artificial reefs. Additionally, under the combined influence of surface runoff, currents, and tides, MPs may migrate horizontally, primarily occurring between middle and bottom water and sediments. The study recommends limiting and reducing wastewater and sewage discharge, as well as regulating fishing and aquaculture activities to control the sources and sinks of MPs in coastal water. Moreover, it advocates the implementation and strengthening of marine monitoring activities to gain a better understanding of the factors driving MP pollution in marine ranching area.
Collapse
Affiliation(s)
- Shike Gao
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China; Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Shuo Zhang
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China; Joint Laboratory for Monitoring and Conservation of Aquatic Living Resources In the Yangtze Estuary, Shanghai 200000, China.
| | - Zhihua Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Jikun Lu
- Marine and Fishery Development Promotion Center In Lianyungang, Lianyungang 222002, Jiangsu, China
| | - Guanghui Fu
- Marine and Fishery Development Promotion Center In Lianyungang, Lianyungang 222002, Jiangsu, China
| | - Wenwen Yu
- Jiangsu Research Institute of Marine Fisheries, Nantong 226007, China
| |
Collapse
|
8
|
Choudhury TR, Riad S, Uddin FJ, Maksud MA, Alam MA, Chowdhury AMS, Mubin AN, Islam ARMT, Malafaia G. Microplastics in multi-environmental compartments: Research advances, media, and global management scenarios. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 265:104379. [PMID: 38851130 DOI: 10.1016/j.jconhyd.2024.104379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/06/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
During the past decades, microplastics (MPs) have become an emerging concern due to their persistence and potential environmental threat. MP pollution has become so drastic that it has been found in the human food chain, breast milk, polar regions, and even the Himalayan basin, lake, etc. Inflammation, pulmonary hypertension, vascular occlusions, increased coagulability and blood cell cytotoxicity, disruption of immune function, neurotoxicity, and neurodegenerative diseases can all be brought on by severe microplastic exposure. Although many MPs studies have been performed on single environmental compartments, MPs in multi-environmental compartments have yet to be explored fully. This review aims to summarize the muti-environmental media, detection tools, and global management scenarios of MPs. The study revealed that MPs could significantly alter C flow through the soil-plant system, the structure and metabolic status of the microbial community, soil pH value, biomass of plant shoots and roots, chlorophyll, leaf C and N contents, and root N contents. This review reveals that MPs may negatively affect many C-dependent soil functions. Different methods have been developed to detect the MPs from these various environmental sources, including microscopic observation, density separation, Raman, and FT-IR analysis. Several articles have focused on MPs in individual environmental sources with a developed evaluation technique. This review revealed the extensive impacts of MPs on soil-plant systems, microbial communities, and soil functions, especially on water, suggesting possible disturbances to vital ecological processes. Furthermore, the broad range of detection methods explored emphasizes the significance of reliable analytical techniques in precisely evaluating levels of MP contamination in various environmental media. This paper critically discusses MPs' sources, occurrences, and global management scenarios in all possible environmental media and ecological health impacts. Future research opportunities and required sustainable strategies have also been suggested from Bangladesh and international perspectives based on challenges faced due to MP's pollution.
Collapse
Affiliation(s)
- Tasrina Rabia Choudhury
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Center Dhaka, Bangladesh Atomic Energy Commission, Dhaka 1000, Bangladesh.
| | - Syed Riad
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, Bangladesh
| | - Foyez Jalal Uddin
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, Bangladesh
| | - M A Maksud
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Center Dhaka, Bangladesh Atomic Energy Commission, Dhaka 1000, Bangladesh
| | - M Abbas Alam
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, Bangladesh; Bangladesh Accreditation Board, Dhaka 1000, Bangladesh
| | | | - Al-Nure Mubin
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
9
|
Islam ARMT, Hasan M, Sadia MR, Mubin AN, Ali MM, Senapathi V, Idris AM, Malafaia G. Unveiling microplastics pollution in a subtropical rural recreational lake: A novel insight. ENVIRONMENTAL RESEARCH 2024; 250:118543. [PMID: 38417661 DOI: 10.1016/j.envres.2024.118543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/01/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
While global attention has been primarily focused on the occurrence and persistence of microplastics (MP) in urban lakes, relatively little attention has been paid to the problem of MP pollution in rural recreational lakes. This pioneering study aims to shed light on MP size, composition, abundance, spatial distribution, and contributing factors in a rural recreational lake, 'Nikli Lake' in Kishoreganj, Bangladesh. Using density separation, MPs were extracted from 30 water and 30 sediment samples taken from ten different locations in the lake. Subsequent characterization was carried out using a combination of techniques, including a stereomicroscope, Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FE-SEM). The results showed a significant prevalence of MPs in all samples, with an average amount of 109.667 ± 10.892 pieces/kg3 (dw) in the sediment and 98.167 ± 12.849 pieces/m3 in the water. Small MPs (<0.5 mm), fragments and transparent colored particles formed the majority, accounting for 80.2%, 64.5% and 55.3% in water and 78.9%, 66.4% and 64.3% in sediment, respectively. In line with global trends, polypropylene (PP) (53%) and polyethylene (PE) (43%) emerged as the predominant polymers within the MPs. MP contents in water and sediment showed positive correlations with outflow, while they correlated negatively with inflow and lake depth (p > 0.05). Local activities such as the discharge of domestic sewage, fishing waste and agricultural runoff significantly influence the distribution of polypropylene. Assessment of pollution factor, pollution risk index and pollution load index values at the sampling sites confirmed the presence of MPs, with values above 1. This study is a baseline database that provides a comprehensive understanding of MP pollution in the freshwater ecosystem of Bangladesh, particularly in a rural recreational lake. A crucial next step is to explore ecotoxicological mechanisms, legislative measures and future research challenges triggered by MP pollution.
Collapse
Affiliation(s)
- Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka, 1216, Bangladesh.
| | - Mehedi Hasan
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh.
| | - Moriom Rahman Sadia
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh.
| | - Al-Nure Mubin
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh.
| | - Mir Mohammad Ali
- Department of Aquaculture, Sher - e - Bangla Agricultural University, Dhaka 1207, Bangladesh.
| | | | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia.
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
10
|
Liza AA, Ashrafy A, Islam MN, Billah MM, Arafat ST, Rahman MM, Karim MR, Hasan MM, Promie AR, Rahman SM. Microplastic pollution: a review of techniques to identify microplastics and their threats to the aquatic ecosystem. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:285. [PMID: 38374279 DOI: 10.1007/s10661-024-12441-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/12/2024] [Indexed: 02/21/2024]
Abstract
Microplastics (MPs), small synthetic particles, have emerged as perilous chemical pollutants in aquatic habitats, causing grave concerns about their disruptive effects on ecosystems. The fauna and flora inhabiting these specific environments consume these MPs, unwittingly introducing them into the intricate web of the food chain. In this comprehensive evaluation, the current methods of identifying MPs are amalgamated and their profound impacts on marine and freshwater ecosystems are discussed. There are many potential risks associated with MPs, including the dangers of ingestion and entanglement, as well as internal injuries and digestive obstructions, both marine and freshwater organisms. In this review, the merits and limitations of diverse identification techniques are discussed, including spanning chemical analysis, thermal identification, and spectroscopic imaging such as Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, and fluorescent microscopy. Additionally, it discusses the prevalence of MPs, the factors that affect their release into aquatic ecosystems, as well as their plausible impact on various aquatic ecosystems. Considering these disconcerting findings, it is imperative that appropriate measures should be taken to assess the potential risks of MP pollution, protect aquatic life and human health, and foster sustainable development.
Collapse
Affiliation(s)
- Afroza Akter Liza
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Asifa Ashrafy
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Md Nazrul Islam
- Forestry and Wood Technology Discipline, Khulna University, Khulna, 9208, Bangladesh.
| | - Md Morsaline Billah
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Shaikh Tareq Arafat
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, 9208, Bangladesh
- Tokyo University of Marine Science and Technology, 4-5-7 Konan Minato-Ku, Tokyo, 108-847, Japan
| | - Md Moshiur Rahman
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, 9208, Bangladesh
- Fish Conservation and Culture Lab, Biological & Agricultural Engineering, University of California, Davis, USA
| | - Md Rezaul Karim
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Md Mehedi Hasan
- Global Sanitation Graduate School, Institute of Disaster Management, Khulna University of Engineering & Technology, Khulna-9203, Bangladesh
| | | | - Sheikh Mustafizur Rahman
- Fisheries and Marine Resource Technology Discipline, Khulna University, Khulna, 9208, Bangladesh
| |
Collapse
|
11
|
Sadia MR, Hasan M, Islam ARMT, Jion MMMF, Masud MAA, Rahman MN, Peu SD, Das A, Bari ABMM, Islam MS, Pal SC, Rakib MRJ, Senapathi V, Idris AM, Malafaia G. A review of microplastic threat mitigation in Asian lentic environments. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 260:104284. [PMID: 38101231 DOI: 10.1016/j.jconhyd.2023.104284] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/14/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Microplastic (MP) pollution has evolved into a significant worldwide environmental concern due to its widespread sources, enduring presence, and adverse effects on lentic ecosystems and human well-being. The growing awareness of the hidden threat posed by MPs in lentic ecosystems has emphasized the need for more in-depth research. Unlike marine environments, there remain unanswered questions about MP hotspots, ecotoxic effects, transport mechanisms, and fragmentation in lentic ecosystems. The introduction of MPs represents a novel threat to long-term environmental health, posing unresolved challenges for sustainable management. While MP pollution in lentic ecosystems has garnered global attention due to its ecotoxicity, our understanding of MP hotspots in lakes from an Asian perspective remains limited. Hence, the aim of this review is to provide a comprehensive analysis of MP hotspots, morphological attributes, ecotoxic impacts, sustainable solutions, and future challenges across Asia. The review summarizes the methods employed in previous studies and the techniques for sampling and analyzing microplastics in lake water and sediment. Notably, most studies concerning lake microplastics tend to follow the order of China > India > Pakistan > Nepal > Turkey > Bangladesh. Additionally, this review critically addresses the analysis of microplastics in lake water and sediment, shedding light on the prevalent net-based sampling methods. Ultimately, this study emphasizes the existing research gaps and suggests new research directions, taking into account recent advancements in the study of microplastics in lentic environments. In conclusion, the review advocates for sustainable interventions to mitigate MP pollution in the future, highlighting the presence of MPs in Asian lakes, water, and sediment, and their potential ecotoxicological repercussions on both the environment and human health.
Collapse
Affiliation(s)
- Moriom Rahman Sadia
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Mehedi Hasan
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | | | - Md Abdullah Al Masud
- School of Architecture, Civil, Environmental, and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Md Naimur Rahman
- Center for Archaeological Studies, University of Liberal Arts, Bangladesh
| | - Susmita Datta Peu
- Department of Agriculture, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Arnob Das
- Department of Mechanical Engineering, Rajshahi University of Engineering & Technology, 6 Rajshahi, 6204, Bangladesh
| | - A B M Mainul Bari
- Department of Industrial and Production Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, Bardhaman 713104, West Bengal, India
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
12
|
Mubin AN, Islam ARMT, Hasan M, Islam MS, Ali MM, Siddique MAB, Alam MS, Rakib MRJ, Islam MS, Momtaz N, Senapathi V, Idris AM, Malafaia G. The path of microplastics through the rare biodiversity estuary region of the northern Bay of Bengal. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 260:104271. [PMID: 38056088 DOI: 10.1016/j.jconhyd.2023.104271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
Due to its harmful effects on ecosystems and human health, microplastic (MP) pollution has become a significant environmental problem on a global scale. Although MPs' pollution path and toxic effects on marine habitats have been examined worldwide, the studies are limited to the rare biodiversity estuary region of Hatiya Island from the northern Bay of Bengal. This study aimed to investigate the MP pollution path and its influencing factors in estuarine sediments and water in rare biodiversity Hatiya Island in the northern Bay of Bengal. Sixty water and sediment samples were collected from 10 sampling sites on the Island and analyzed for MPs. The abundance of MPs in sediment ranged from 67 to 143 pieces/kg, while the abundance in water ranged from 24.34 to 59 pieces/m3. The average concentrations of MPs in sediment and water were 110.90 ± 20.62 pieces/kg and 38.77 ± 10.09 pieces/m3, respectively. Most identified MPs from sediment samples were transparent (51%), while about 54.1% of the identified MPs from water samples were colored. The fragment was the most common form of MP in both compartments, with a value of 64.6% in sediment samples and 60.6% in water samples. In sediment and water samples, almost 74% and 80% of MP were <0.5 mm, respectively. Polypropylene (PP) was the most abundant polymer type, accounting for 51% of all identified polymers. The contamination factor, pollution load index, polymer risk score, and pollution risk score values indicated that the study area was moderately polluted with MPs. The spatial distribution patterns and hotspots of MPs echoed profound human pathways. Based on the results, sustainable management strategies and intervention measures were proposed to reduce the pollution level in the ecologically diverse area. This study provides important insights into evaluating estuary ecosystem susceptibility and mitigation policies against persistent MP issues.
Collapse
Affiliation(s)
- Al-Nure Mubin
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Mehedi Hasan
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Mir Mohammad Ali
- Department of Aquaculture, Sher - e - Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Md Sha Alam
- Institute of Mining, Mineralogy & Metallurgy (IMMM), Bangladesh Council of Scientific & Industrial Research (BCSIR), Joypurhat 5900, Bangladesh
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Muhammad Saiful Islam
- Fiber and Polymer Research Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Nasima Momtaz
- Biological Research Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | | | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Goiânia, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
13
|
Jafarova M, Grifoni L, Renzi M, Bentivoglio T, Anselmi S, Winkler A, Di Lella LA, Spagnuolo L, Aherne J, Loppi S. Robinia pseudoacacia L. (Black Locust) Leaflets as Biomonitors of Airborne Microplastics. BIOLOGY 2023; 12:1456. [PMID: 38132282 PMCID: PMC10740701 DOI: 10.3390/biology12121456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
Here we investigate the suitability of Robinia pseudoacacia L. (black locust) leaflets as a novel biomonitor of airborne microplastics (MPs) including tyre wear particles (TWPs). Leaflets were collected from rural roadside locations (ROs, n = 5) and urban parks (UPs, n = 5) in Siena, Italy. MPs were removed by washing, identified by stereomicroscope, and analysed for polymer type by Fourier transform infrared spectroscopy. Daily MP deposition was estimated from leaf area. The mass magnetic susceptibility and the bioaccumulation of traffic-related potentially toxic elements (PTEs) were also analysed. The total number of MPs at ROs was significantly higher at 2962, dominated by TWPs, compared with 193 in UPs, where TWPs were not found. In contrast, total microfibres were significantly higher in UPs compared with ROs (185 vs. 86). Daily MP deposition was estimated to range from 4.2 to 5.1 MPs/m2/d across UPs and 29.9-457.6 MPs/m2/d across ROs. The polymer types at ROs were dominated by rubber (80%) from TWPs, followed by 15% polyamide (PA) and 5% polysulfone (PES), while in UPs the proportion of PES (44%) was higher than PA (22%) and polyacrylonitrile (11%). The mean mass magnetic susceptibility, a proxy of the bioaccumulation of traffic-related metallic particles, was higher at ROs (0.62 ± 0.01 10-8 m3/kg) than at UPs (-0.50 ± 0.03 10-8 m3/kg). The content of PTEs was similar across sites, except for significantly higher concentrations of Sb, a tracer of vehicle brake wear, at ROs (0.308 ± 0.008 µg/g) compared with UPs (0.054 ± 0.006 µg/g). Our results suggest that the waxy leaflets and easy determination of surface area make Robinia an effective biomonitor for airborne MPs including TWPs.
Collapse
Affiliation(s)
- Mehriban Jafarova
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.J.); (L.G.); (L.A.D.L.); (S.L.)
| | - Lisa Grifoni
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.J.); (L.G.); (L.A.D.L.); (S.L.)
- Istituto Nazionale di Geofisica e Vulcanologia, 00143 Rome, Italy; (A.W.); (L.S.)
| | - Monia Renzi
- Department of Life Science, University of Trieste, Via L. Giorgieri, 10, 34127 Trieste, Italy;
| | - Tecla Bentivoglio
- Bioscience Research Center, Via Aurelia Vecchia, 32, 58015 Orbetello, Italy; (T.B.); (S.A.)
| | - Serena Anselmi
- Bioscience Research Center, Via Aurelia Vecchia, 32, 58015 Orbetello, Italy; (T.B.); (S.A.)
| | - Aldo Winkler
- Istituto Nazionale di Geofisica e Vulcanologia, 00143 Rome, Italy; (A.W.); (L.S.)
| | - Luigi Antonello Di Lella
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.J.); (L.G.); (L.A.D.L.); (S.L.)
| | - Lilla Spagnuolo
- Istituto Nazionale di Geofisica e Vulcanologia, 00143 Rome, Italy; (A.W.); (L.S.)
| | - Julian Aherne
- School of Environment, Trent University, Peterborough, ON K9L 0G2, Canada
| | - Stefano Loppi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (M.J.); (L.G.); (L.A.D.L.); (S.L.)
| |
Collapse
|
14
|
Miao C, Zhang J, Jin R, Li T, Zhao Y, Shen M. Microplastics in aquaculture systems: Occurrence, ecological threats and control strategies. CHEMOSPHERE 2023; 340:139924. [PMID: 37625491 DOI: 10.1016/j.chemosphere.2023.139924] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
With the intensification of microplastic pollution globally, aquaculture environments also face risks of microplastic contamination through various pathways such as plastic fishing gear. Compared to wild aquatic products, cultured aquatic products are more susceptible to microplastic exposure through fishing tackle, thus assessing the impacts of microplastics on farmed species and human health. However, current research on microplastic pollution and its ecological effects in aquaculture environments still remains insufficient. This article comprehensively summarizes the pollution characteristics and interrelationships of microplastics in aquaculture environments. We analyzed the influence of microplastics on the sustainable development of the aquaculture industry. Then, the potential hazards of microplastics on pond ecosystems and consumer health were elucidated. The strategies for removing microplastics in aquaculture environments are also discussed. Finally, an outlook on the current challenge and the promising opportunities in this area was proposed. This review aims to evaluate the value of assessing microplastic pollution in aquaculture environments and provide guidance for the sustainable development of the aquaculture industry.
Collapse
Affiliation(s)
- Chunheng Miao
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, PR China
| | - Jiahao Zhang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, PR China
| | - Ruixin Jin
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, PR China
| | - Tianhao Li
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, PR China
| | - Yifei Zhao
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, PR China
| | - Maocai Shen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, PR China.
| |
Collapse
|
15
|
Rex M C, Debroy A, Nirmala MJ, Mukherjee A. Ecotoxicological significance of bio-corona formation on micro/nanoplastics in aquatic organisms. RSC Adv 2023; 13:22905-22917. [PMID: 37520083 PMCID: PMC10375451 DOI: 10.1039/d3ra04054b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023] Open
Abstract
The unsustainable manufacturing, utilization and inadequate handling of plastics have led to a surge in global plastic pollution. In recent times, there has been increasing concern about the plausible hazards associated with exposure to micro/nanoplastics (M/NPs). As aquatic systems are considered to be the likely sink for M/NPs, it is crucial to comprehend their environmental behavior. The bioavailability, toxicity and fate of M/NPs in the environment are predominantly dictated by their surface characteristics. In the aquatic environment, M/NPs are prone to be internalized by aquatic organisms. This may facilitate their interaction with a diverse array of biomolecules within the organism, resulting in the formation of a biocorona (BC). The development of BC causes modifications in the physicochemical attributes of the M/NPs including changes to their size, stability, surface charge and other properties. This review details the concept of BC formation and its underlying mechanism. It provides insight on the analytical techniques employed for characterizing BC formation and addresses the associated challenges. Further, the eco-toxicological implications of M/NPs and the role of BC in modifying their potential toxicity on aquatic organisms is specified. The impact of BC formation on the fate and transport of M/NPs is discussed. A concise outlook on the future perspectives is also presented.
Collapse
Affiliation(s)
- Camil Rex M
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore 632014 India
| | - Abhrajit Debroy
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore 632014 India
| | - M Joyce Nirmala
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600036 India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore 632014 India
| |
Collapse
|