1
|
Gao B, Gong Y, Lu Y, Gou S, Lai X, Luo G, Yang H. Association between perfluoroalkyl and polyfluoroalkyl substances and adolescents' sleep disorders: NHANES 2005-2018. Front Nutr 2025; 12:1584281. [PMID: 40444251 PMCID: PMC12121506 DOI: 10.3389/fnut.2025.1584281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 04/18/2025] [Indexed: 06/02/2025] Open
Abstract
Background Previous research indicates that per- and polyfluoroalkyl substances (PFAS) can disrupt metabolism and neurological function via endocrine pathway interference and neuroinflammation. These effects may impair melatonin secretion and disrupt circadian rhythm regulation, suggesting potential links to sleep health. However, the impact of PFAS exposure on adolescent sleep remains unclear. This study examines the associations between PFAS exposure and sleep health indicators in U.S. adolescents. Methods Data from 838 adolescents who participated in the 2005-2018 National Health and Nutrition Examination Survey (NHANES) were analyzed to investigate the association between PFAS exposure and physician-diagnosed sleep disorders. Eight PFAS compounds were identified. Multivariate logistic regression models, restricted cubic spline (RCS) curves, Bayesian kernel machine regression (BKMR), and weighted quantile sum (WQS) regression were used to assess single, linear, and combined effects on adolescent sleep disorders. Results Negative associations were observed between adolescent sleep disorders and three PFAS compounds, specifically perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), and perfluorononanoic acid (PFNA). RCS analysis revealed a significant linear relationship (P for non-linear > 0.05). The BKMR and WQS models demonstrated a combined effect of PFAS exposure on sleep disorders, with PFOS demonstrating the most substantial contribution (effect size: 0.91). The stratified analysis revealed that PFOS exposure had a greater impact on females [odds ratio (OR): 0.54, 95% confidence interval (CI): 0.33-0.87] than males (OR: 0.50, 95% CI: 0.24-1.01), suggesting sex-specific differences in vulnerability. Conclusions Our findings indicate a negative correlation between specific PFAS and specific sleep disorders in adolescents, with PFOS being the dominant effect component in the PFAS mixture and stronger effects observed in females. However, due to the cross-sectional nature of the study, a causal relationship cannot be established. These results highlight the potential public health impact of PFAS exposure and the need to further investigate the underlying mechanisms and causal pathways in future longitudinal or experimental studies.
Collapse
Affiliation(s)
- Bocheng Gao
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanju Gong
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Lu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuhua Gou
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xingyue Lai
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gan Luo
- Department of Orthopedics, Chengdu Integrated Traditional Chinese Medicine & Western Medicine Hospital/Chengdu First People's Hospital, Chengdu, China
| | - Hong Yang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Li X, Hou M, Zhang F, Ji Z, Cai Y, Shi Y. Per- and Polyfluoroalkyl Substances and Female Health Concern: Gender-based Accumulation Differences, Adverse Outcomes, and Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1469-1486. [PMID: 39803974 DOI: 10.1021/acs.est.4c08701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The deleterious health implications of perfluoroalkyl and polyfluoroalkyl substances (PFAS) are widely recognized. Females, in contrast to males, exhibit unique pathways for PFAS exposure and excretion, leading to complex health outcomes. The health status of females is largely influenced by hormone-related processes. PFAS have been reported to be associated with various aspects of female health, including reproductive system disorders and pregnancy-related diseases. In this article, we provide insights into the correlations between PFAS and female-prevalent diseases. Current epidemiological and toxicological evidence has demonstrated that the adverse effects of PFAS on the health of the female reproductive system are primarily attributed to the disruption of the hypothalamic-pituitary-gonadal (HPG) axis and hormonal homeostasis. However, these findings do not sufficiently elucidate the intricate associations between PFAS and specific diseases. Furthermore, autoimmune disorders, another category that is more prevalent in women compared to men, require additional investigation. Immune biomarkers pertinent to autoimmune disorders have been observed to be influenced by PFAS exposure, although epidemiological evidence is insufficient to substantiate these relations. Further thorough exploration encompassing epidemiological and toxicological studies is essential to elucidating the inherent influence of PFAS on human pathologies. Additionally, comprehensive investigations into female health issues beyond their reproductive functions is essential.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minmin Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Zhang
- Environmental Science Research & Design Institute of Zhejiang Province and Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province, HangzhouZhejiang310007, China
| | - Zhengquan Ji
- Environmental Science Research & Design Institute of Zhejiang Province and Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province, HangzhouZhejiang310007, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Qu H, Han Y, Wang C, Zheng D, Ni Y, Xiao X. Unveiling the Research Void: Exploring the Reproductive Effects of PFAS Compounds on Male Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:127-162. [PMID: 40301256 DOI: 10.1007/978-3-031-82990-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) represent an emerging concern for male reproductive health. Epidemiological studies have reported associations between increased PFAS exposure and reduced semen quality parameters, lower sperm counts, and potential alterations in reproductive hormone levels. Toxicology research has revealed possible mechanisms including blood-testis barrier disruption, oxidative stress, interference with testicular cell function, and epigenetic changes. However, significant uncertainties remain regarding definitive exposure-response relationships, developmental windows of heightened vulnerability, combined mixture effects, and causality interpretation, given limitations inherent to observational studies. Ongoing investigation of short-chain and replacement PFAS compounds is also critically needed. Additionally, directly connecting the mechanistic insights from animal models to human fertility impacts remains challenging. While controlled toxicology studies have described pathways by which PFAS could impair cellular functioning in the testes, uncertainty persists in extrapolating these experimental effects to real-world human exposures and sperm parameter declines reported epidemiologically. Overall, current findings suggest PFAS may contribute to declining male reproductive function, but additional clarification through well-designed longitudinal cohort studies integrated with mechanistic animal work is still warranted to confirm exposure-fertility links across a range of PFAS types and inform evidence-based public health mitigation strategies.
Collapse
Affiliation(s)
- Haoyang Qu
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Yating Han
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Chenglu Wang
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Dongwang Zheng
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - Ya Ni
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China
| | - Xiang Xiao
- Center for Reproductive Health, School of Pharmaceutical Sciences, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, China.
- Zhejiang Provincial Laboratory of Experimental Animal's and Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China.
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
4
|
Maxwell DL, Petriello MC, Pilsner JR. PFAS Exposure and Male Reproductive Health: Implications for Sperm Epigenetics. Semin Reprod Med 2024; 42:288-301. [PMID: 39788533 PMCID: PMC11893235 DOI: 10.1055/s-0044-1801363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are persistent environmental contaminants found in human tissues and persist in the environment, posing significant risks to reproductive health. This review examines the impact of PFAS exposure on male reproductive health, with a focus on sperm epigenetics. PFASs disrupt endocrine function by altering key reproductive hormones and impairing sperm motility, quality, and viability. Epidemiologic and animal studies highlight inconsistent yet concerning associations between PFAS exposure and semen parameters, as well as altered gene expression and DNA methylation patterns. Moreover, PFAS exposure during critical windows of development has been linked to differential impacts on male versus female pubertal development, cognitive outcomes, and reproductive physiology, emphasizing the complexity of PFAS interactions. This comprehensive analysis highlights the need for continued research into the mechanisms by which PFASs influence reproductive health and development with potential implications for sperm epigenetics. The review emphasizes the importance of understanding the epigenetic mechanisms behind these disruptions, particularly DNA methylation and its role in heritable changes. Investigating the epigenetic modifications driven by PFAS exposure is crucial for elucidating the mechanisms by which these chemicals influence reproductive health. Future research should focus on understanding these epigenetic changes in both immediate fertility outcomes and transgenerational health risks.
Collapse
Affiliation(s)
- DruAnne L Maxwell
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, Detroit, Michigan
- Department of Physiology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Michael C Petriello
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan
| | - J Richard Pilsner
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan
| |
Collapse
|
5
|
Zhao H, Ren Y, Ni J, Fang L, Zhang T, Wang M, Cai G, Ma Y, Pan F. Sex-specific association of per- and polyfluoroalkyl substances (PFAS) exposure with vitamin D concentrations in older adults in the USA: an observational study. Environ Health 2024; 23:100. [PMID: 39551762 PMCID: PMC11571557 DOI: 10.1186/s12940-024-01140-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are commonly utilized in consumer products. While earlier studies have suggested potential impacts of certain PFAS on serum concentrations of vitamin D, these investigations were constrained to a limited set of conventional PFAS. Moreover, they did not specifically focus on populations with longer duration of PFAS exposure and potentially higher blood PFAS levels, such as older adults, and lacked adequate evidence to examine sex-related disparities. METHODS This observational investigation utilized cross-sectional data obtained from the U.S. NHANES spanning the years 2003 to 2018. Survey-weighted multiple regression models were employed to evaluate the relationship between PFAS exposure and vitamin D concentrations. Multi-pollutant models were employed to evaluate the association between PFAS mixtures and vitamin D concentrations. Subsequently, environmental risk scores (ERS) were constructed to gauge associations with vitamin D concentrations. ERS was computed through a weighted linear combination of PFAS, utilizing calculations from ridge regression and adaptive elasticity network (adENET) methodologies. All analyses were stratified by sex. RESULTS The study encompassed 3,853 older adults. Our analysis revealed a negative association between PFOA, PFOS, PFNA, and MeFOSAA and serum vitamin D concentrations. In analyses examining mixed exposures, various models consistently indicated an inverse association between PFAS mixed exposure and vitamin D concentrations. Moreover, an increase in ERS of PFAS across the interquartile range was associated with a decrease in vitamin D concentrations (Q4 vs. Q1, adENET: β: -0.083, 95% CI: -0.117, -0.048; ridge regression: β: -0.077, 95% CI: -0.111, -0.042). Notably, these associations were exclusively observed within the female population. CONCLUSIONS Our study indicates that heightened exposure to PFAS correlates with diminished serum vitamin D concentrations in females aged 60 years and older, evident in both single and mixed exposures. These findings find support in in vitro mechanistic studies, suggesting that PFAS may impact the metabolism of 25(OH)D, consequently affecting vitamin D concentrations.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, Anhui, 230032, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Yuxin Ren
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, Anhui, 230032, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Jianping Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, Anhui, 230032, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Lanlan Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, Anhui, 230032, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Tao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, Anhui, 230032, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Mengmeng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, Anhui, 230032, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Guoqi Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, Anhui, 230032, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China
| | - Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, Anhui, 230032, China.
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, Anhui, 230032, China.
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| |
Collapse
|
6
|
Lan Y, Nie P, Yuan H, Xu H. Adolescent F-53B exposure induces ovarian toxicity in rats: Autophagy-apoptosis interplay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175609. [PMID: 39163935 DOI: 10.1016/j.scitotenv.2024.175609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/27/2024] [Accepted: 08/15/2024] [Indexed: 08/22/2024]
Abstract
As a substitute for perfluorooctane sulfonates, F-53B has permeated into the environment and can reach the human body through the food chain. Adolescent individuals are in a critical stage of development and may be more sensitive to the impacts of F-53B. In the present study, we modeled the exposure of adolescent female rats by allowing them free access to F-53B at concentrations of 0 mg/L, 0.125 mg/L, and 6.25 mg/L in drinking water, aiming to simulate the exposure in the adolescent population. Using the ovary as the focal point, we investigated the impact of developmental exposure to F-53B on female reproduction. The results indicated that F-53B induced reproductive toxicity in adolescent female rats, including ovarian lesions, follicular dysplasia and hormonal disorders. In-depth investigations revealed that F-53B induced ovarian oxidative stress, triggering autophagy within the ovaries, and the autophagy exhibited the interplay with apoptosis in turn, collectively leading to significant ovarian toxicity. Our findings provided deeper insights into the roles of the autophagy-apoptosis interplay in ovarian toxicity, and offered a new perspective on the developmental toxicity inflicted by adolescent F-53B exposure.
Collapse
Affiliation(s)
- Yuzhi Lan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Penghui Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hongbin Yuan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang 330200, China.
| |
Collapse
|
7
|
Clark KL, George JW, Davis JS. Adolescent exposure to a mixture of per- and polyfluoroalkyl substances (PFAS) depletes the ovarian reserve, increases ovarian fibrosis, and alters the Hippo pathway in adult female mice. Toxicol Sci 2024; 202:36-49. [PMID: 39141488 PMCID: PMC11514835 DOI: 10.1093/toxsci/kfae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals known for their environmental persistence and resistance to biodegradation. This study investigated the impact of adolescent exposure to a PFAS mixture on adult ovarian function. Female CD-1 mice were orally exposed to vehicle control or a PFAS mixture (comprised of perfluorooctanoic acid, perfluorooctanesulfonic acid, undecafluoro-2-methyl-3-oxahexanoic acid, and perfluorobutanesulfonic acid) for 15 d. After a 42-d recovery period, reproductive hormones, ovarian fibrosis, and ovarian gene and protein expression were analyzed using ELISA, Picrosirius red staining, qPCR, and immunoblotting, respectively. Results revealed that PFAS exposure did not affect adult body or organ weight, although ovarian weight slightly decreased. PFAS-exposed mice exhibited a disturbed estrous cycle, with less time spent in proestrus than control mice. Follicle counting indicated a reduction in primordial and primary follicles. Serum analysis revealed no changes in steroid hormones, follicle-stimulating hormone, or anti-Müllerian hormone, but a significant increase in luteinizing hormone was observed in PFAS-treated mice. Ovaries collected from PFAS-treated mice had increased mRNA transcripts for steroidogenic enzymes and fatty acid synthesis-related genes. PFAS exposure also increased collagen content in the ovary. Additionally, serum tumor necrosis factor-α levels were higher in PFAS-treated mice. Finally, transcripts and protein abundance for Hippo pathway components were upregulated in the ovaries of the PFAS-treated mice. Overall, these findings suggest that adolescent exposure to PFAS can disrupt ovarian function in adulthood.
Collapse
Affiliation(s)
- Kendra L Clark
- Department of Obstetrics and Gynecology, Olson Center for Women’s Health, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Department of Environmental, Agricultural, and Occupational Health, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
| | - Jitu W George
- Department of Obstetrics and Gynecology, Olson Center for Women’s Health, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - John S Davis
- Department of Obstetrics and Gynecology, Olson Center for Women’s Health, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
| |
Collapse
|
8
|
Lu Y, Yan H, Li P, Han Y, Shen S. Molecularly imprinted resin modified with ionic liquid for dispersive filter extraction and determination of perfluoroalkyl acids in eggs. Food Chem 2024; 453:139677. [PMID: 38788647 DOI: 10.1016/j.foodchem.2024.139677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/20/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Perfluoroalkyl acids (PFAAs) are emerging pollutants that endangers food safety. Developing methods for the selective determination of trace PFAAs in complex samples remains challenging. Herein, an ionic liquid modified porous imprinted phenolic resin-dispersive filter extraction-liquid chromatography-tandem mass spectrometry (IL-PIPR-DFE-LC-MS/MS) method was developed for the determination of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in eggs. The new IL-PIPR adsorbent was prepared at room temperature, which avoids the disorder and instability of the template at high temperatures. The imprinting factor of IL-PIPR for PFOA and PFOS exceeded 7.3. DFE, combined with IL-PIPR (15 mg), was used to extract PFOA and PFOS from eggs within 15 min. The established method exhibits low limits of detection (0.01-0.02 ng/g) and high recoveries (84.7%-104.7%), which surpass those of previously reported methods. This work offers a new approach to explore advanced imprinted adsorbents for PFAAs, efficient sample pretreatment technique, and analytical method for pollutants in foods.
Collapse
Affiliation(s)
- Yanke Lu
- Hebei Key Laboratory of Analytical Science and Technology of Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- Hebei Key Laboratory of Analytical Science and Technology of Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding, 071002, China
| | - Pengfei Li
- Hebei Key Laboratory of Analytical Science and Technology of Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Yehong Han
- Hebei Key Laboratory of Analytical Science and Technology of Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Shigang Shen
- Hebei Key Laboratory of Analytical Science and Technology of Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
9
|
Clark KL, Shukla M, George JW, Gustin S, Rowley MJ, Davis JS. An environmentally relevant mixture of per- and polyfluoroalkyl substances (PFAS) impacts proliferation, steroid hormone synthesis, and gene transcription in primary human granulosa cells. Toxicol Sci 2024; 200:57-69. [PMID: 38603627 PMCID: PMC11199914 DOI: 10.1093/toxsci/kfae049] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic chemicals that are resistant to biodegradation and are environmentally persistent. PFAS are found in many consumer products and are a major source of water and soil contamination. This study investigated the effects of an environmentally relevant PFAS mixture (perfluorooctanoic acid [PFOA], perfluorooctanesulfonic acid [PFOS], perfluorohexanesulfonic acid [PFHxS]) on the transcriptome and function of human granulosa cells (hGCs). Primary hGCs were harvested from follicular aspirates of healthy, reproductive-age women who were undergoing oocyte retrieval for in vitro fertilization. Liquid Chromatography with tandem mass spectrometry (LC/MS-MS) was performed to identify PFAS compounds in pure follicular fluid. Cells were cultured with vehicle control or a PFAS mixture (2 nM PFHxS, 7 nM PFOA, 10 nM PFOS) for 96 h. Analyses of cell proliferation/apoptosis, steroidogenesis, and gene expression were measured via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays/immunofluorescence, ELISA/western blotting, and RNA sequencing/bioinformatics, respectively. PFOA, PFOS, and PFHxS were detected in 100% of follicle fluid samples. Increased cell proliferation was observed in hGCs treated with the PFAS mixture with no impacts on cellular apoptosis. The PFAS mixture also altered steroid hormone synthesis, increasing both follicle-stimulating hormone-stimulated and basal progesterone secretion and concomitant upregulation of STAR protein. RNA sequencing revealed inherent differences in transcriptomic profiles in hGCs after PFAS exposure. This study demonstrates functional and transcriptomic changes in hGCs after exposure to a PFAS mixture, improving our knowledge about the impacts of PFAS exposures and female reproductive health. These findings suggest that PFAS compounds can disrupt normal granulosa cell function with possible long-term consequences on overall reproductive health.
Collapse
Affiliation(s)
- Kendra L Clark
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska 68105, USA
| | - Mamta Shukla
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Jitu W George
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska 68105, USA
| | - Stephanie Gustin
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
- Heartland Center for Reproductive Medicine, Omaha, Nebraska 68138, USA
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - John S Davis
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska 68105, USA
| |
Collapse
|
10
|
Nie P, Lan Y, You T, Jia T, Xu H. F-53B mediated ROS affects uterine development in rats during puberty by inducing apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116399. [PMID: 38677070 DOI: 10.1016/j.ecoenv.2024.116399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs), as pollutants, can cause palpable environmental and health impacts around the world, as endocrine disruptors, can disrupt endocrine homeostasis and increase the risk of diseases. Chlorinated polyfluoroalkyl ether sulfonate (F-53B), as a substitute for PFAS, was determined to have potential toxicity. Puberty is the stage when sexual organs develop and hormones change dramatically, and abnormal uterine development can increase the risk of uterine lesions and lead to infertility. This study was designed to explore the impact of F-53B on uterine development during puberty. Four-week-old female SD rats were exposed to 0.125 and 6.25 mg/L F-53B during puberty. The results showed that F-53B interfered with growth and sex hormone levels and bound to oestrogen-related receptors, which affected their function, contributed to the accumulation of reactive oxygen species, promoted cell apoptosis and inhibited cell proliferation, ultimately causing uterine dysplasia.
Collapse
Affiliation(s)
- Penghui Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yuzhi Lan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Tao You
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Tiantian Jia
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang 330200, PR China.
| |
Collapse
|
11
|
Fleury ES, Kuiper JR, Buckley JP, Papandonatos GD, Cecil KM, Chen A, Eaton CB, Kalkwarf HJ, Lanphear BP, Yolton K, Braun JM. Evaluating the association between longitudinal exposure to a PFAS mixture and adolescent cardiometabolic risk in the HOME Study. Environ Epidemiol 2024; 8:e289. [PMID: 38343730 PMCID: PMC10852393 DOI: 10.1097/ee9.0000000000000289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/14/2023] [Indexed: 02/15/2024] Open
Abstract
Background Exposure to per- and polyfluoroalkyl substances (PFAS) throughout gestation and childhood may impact cardiometabolic risk. Methods In 179 HOME Study participants (Cincinnati, OH; recruited 2003-2006), we used latent profile analysis to identify two distinct patterns of PFAS exposure from serum concentrations of four PFAS measured at birth and ages 3, 8, and 12 years. We assessed the homeostatic model of insulin resistance, triglycerides-to-high-density lipoprotein cholesterol ratio, leptin-to-adiponectin ratio, systolic blood pressure, visceral fat, and hemoglobin A1c levels at age 12 years. We used multivariable linear regression to assess the association of membership in the longitudinal PFAS mixture exposure group with a summary measure of overall cardiometabolic risk and individual components. Results One PFAS exposure profile (n = 66, 39%) had higher geometric means of all PFAS across all visits than the other. Although adjusted associations were null in the full sample, child sex modified the association of longitudinal PFAS mixture exposure group with overall cardiometabolic risk, leptin-to-adiponectin ratio, systolic blood pressure, and visceral fat (interaction term P values: 0.02-0.08). Females in the higher exposure group had higher cardiometabolic risk scores (ß = 0.43; 95% CI = -0.08, 0.94), systolic blood pressures (ß = 0.6; 95% CI = 0.1, 1.1), and visceral fat (ß = 0.44; 95% CI = -0.13, 1.01); males had lower cardiometabolic risk scores (ß = -0.52; 95% CI = -1.06, -0.06), leptin-to-adiponectin ratios (ß = -0.7; 95% CI = -1.29, -0.1), systolic blood pressures (ß = -0.14; 95% CI = -0.7, 0.41), and visceral fat (ß = -0.52; 95% CI = -0.84, -0.19). Conclusions Exposure to this PFAS mixture throughout childhood may have sex-specific effects on adolescent cardiometabolic risk.
Collapse
Affiliation(s)
| | - Jordan R. Kuiper
- Department of Environmental and Occupational Health, The George Washington University Milken Institute School of Public Health, Washington, D.C
| | - Jessie P. Buckley
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | | | - Kim M. Cecil
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Charles B. Eaton
- Department of Family Medicine, Warren Alpert Medical School of Brown University, Providence, RI
| | - Heidi J. Kalkwarf
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Bruce P. Lanphear
- Faculty of Health Sciences, Simon Fraser University, Vancouver, BC, Canada
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Joseph M. Braun
- Department of Epidemiology, Brown University, Providence, RI
| |
Collapse
|
12
|
Lan H, Hu Z, Gan H, Wu L, Xie S, Jiang Y, Ye D, Ye X. Association between exposure to persistent organic pollutants and pubertal timing in boys and girls: A systematic review and meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115540. [PMID: 37801753 DOI: 10.1016/j.ecoenv.2023.115540] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
In recent years, the phenomenon of abnormal pubertal timing in children has become increasingly common worldwide. Persistent organic pollutants (POPs) may be one of the risk factors contributing to this phenomenon, but the relationship between them is unclear based on current evidence. The purpose of this study was to determine the association of POPs exposure with pubertal timing in girls and boys by conducting a systematic review and meta-analysis. We searched PubMed and Embase databases for studies before June 1, 2023. Meta-analysis was performed by pooling relative risk (RR) or odds ratio (OR) or prevalence ratio (PR) or hazard ratio (HR) estimates with 95 % confidence intervals (CIs). Subgroup analysis, publication bias assessment and sensitivity analysis were also carried out. A total of 21 studies were included, involving 2479 boys and 8718 girls. The results of meta-analysis showed that exposure to POPs was significantly associated with delayed pubertal timing in girls (RR: 0.85; 95 % CI: 0.79-0.91; p < 0.001). There was no statistically significant association between exposure to POPs and pubertal timing in boys (RR: 1.18; 95 % CI: 0.99-1.40; p = 0.070). Subgroup analysis showed that there may be gender differences in the effects of exposure to POPs on pubertal timing. Our results suggested that exposure to POPs could delay pubertal timing in girls. However, based on current evidence, no significant association was found between POPs exposure and pubertal timing in boys.
Collapse
Affiliation(s)
- Huili Lan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhiqin Hu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hongya Gan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lixiang Wu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shushu Xie
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yan Jiang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ding Ye
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
13
|
Liu Y, Gairola R, Kuiper JR, Papandonatos GD, Kelsey KT, Langevin SM, Buckley JP, Chen A, Lanphear BP, Cecil KM, Yolton K, Braun JM. Lifetime Postnatal Exposure to Perfluoroalkyl Substance Mixture and DNA Methylation at Twelve Years of Age. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2023; 10:824-830. [PMID: 39831111 PMCID: PMC11741666 DOI: 10.1021/acs.estlett.3c00410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Per- and polyfluoroalkyl substance (PFAS) exposure has been linked to DNA methylation changes in neonates and adults. We previously reported that prenatal PFAS exposure may have a durable impact on DNA methylation from birth to adolescence. However, few studies have examined the association of postnatal PFAS exposure with alterations in DNA methylation. We examined the associations of lifetime postnatal PFAS mixture exposure with leukocyte DNA methylation in 154 adolescents from the HOME Study (2003-2006; Cincinnati, Ohio). Lifetime postnatal PFAS mixture exposure was estimated using latent profile analysis of four PFAS concentrations measured at birth, and ages 3, 8, and 12 years. We measured DNA methylation in peripheral leukocytes at 12 years using the Illumina HumanMethylation EPIC BeadChip. We estimated covariate-adjusted associations between postnatal PFAS mixture concentrations and DNA methylation measures using linear regression, and used KEGG enrichment analysis to identify molecular pathways. Four significant differentially methylated positions were observed in the higher vs. lower PFAS profile (FDR p-value <0.05). These PFAS-associated CpG sites annotated to gene regions related to various cancers, cognition, and cardiometabolic health. We identified 17 pathways (FDR p-value <0.05), which indicates possible mechanism linking PFAS exposure to several health effects.
Collapse
Affiliation(s)
- Yun Liu
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, 02903, USA
| | - Richa Gairola
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, 02903, USA
| | - Jordan R. Kuiper
- Department of Environmental and Occupational Health, George Washington University Milken Institute School of Public Health, Washington, D.C., 20037, USA
| | - George D. Papandonatos
- Department of Biostatistics, Brown University School of Public Health, Providence, RI, 02903, USA
| | - Karl T. Kelsey
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, 02903, USA
- Department of Laboratory Medicine & Pathology, Brown University, Providence, RI, 02903, USA
| | - Scott M. Langevin
- Department of Environmental & Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Jessie P. Buckley
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Bruce P. Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Kim M. Cecil
- Department of Environmental & Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Kimberly Yolton
- Department of Environmental & Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Joseph M. Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, 02903, USA
| |
Collapse
|
14
|
Pinney SM, Fassler CS, Windham GC, Herrick RL, Xie C, Kushi LH, Biro FM. Exposure to Perfluoroalkyl Substances and Associations with Pubertal Onset and Serum Reproductive Hormones in a Longitudinal Study of Young Girls in Greater Cincinnati and the San Francisco Bay Area. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:97009. [PMID: 37751325 PMCID: PMC10521915 DOI: 10.1289/ehp11811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS), endocrine disrupting chemicals with worldwide exposure, cause changes in mammary gland development in rodents. A few human studies report delay in pubertal events with increasing perfluorooctanoic acid (PFOA) exposure, but to our knowledge none have examined reproductive hormone levels at thelarche. METHODS In a cohort of Greater Cincinnati (GC) and San Francisco Bay Area (SFBA) girls recruited at 6-8 years of age, clinical examinations were conducted annually or semiannually with sequential Tanner staging. PFAS concentrations were measured in the first serum sample of 704 girls. In 304 GC girls, estradiol (E 2 ), estrone (E 1 ), testosterone (T), and dihydroepiandrosterone sulfate (DHEAS) were measured in serum at four time points around puberty. Relationships between PFAS and age at thelarche, pubarche, and menarche were analyzed using survival and structural equation models. The association between PFAS and reproductive hormones was assessed using linear regression models. RESULTS Median PFOA serum concentrations in GC (N = 353 , 7.3 ng / mL ) and the SFBA (N = 351 , 5.8 ng / mL ) were higher than in the U.S. POPULATION In multivariable Cox proportional hazard models [adjusted for race, body mass index (BMI)], increasing serum log-transformed PFOA was associated with a delay in pubarche [hazard ratio ( HR ) = 0.83 ; 95% CI: 0.70, 0.99] and menarche (HR = 0.04 ; 95% CI: 0.01, 0.25). Structural equation models indicated a triangular relationship between PFOA, BMI percentile, and the age at the pubertal milestone. Increased PFOA had a statistically significant direct effect of delay on all three milestones, as did BMI. Perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDeA), and 2-(N -methyl-perfluorooctane sulfonamido) acetic acid (Me-PFOSA-AcOH) also were associated with later thelarche, and Me-PFOSA-AcOH also with later pubarche. PFOA was inversely associated with DHEAS (p < 0.01 ), E 1 (p = 0.04 ), and T (p = 0.03 ) concentrations at 6 months prior to puberty. CONCLUSIONS PFAS may delay pubertal onset through the intervening effects on BMI and reproductive hormones. The decreases in DHEAS and E 1 associated with PFOA represent biological biomarkers of effect consistent with the delay in onset of puberty. https://doi.org/10.1289/EHP11811.
Collapse
Affiliation(s)
- Susan M. Pinney
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Cecily S. Fassler
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Gayle C. Windham
- California Department of Public Health, Richmond, California, USA
| | - Robert L. Herrick
- Health Division, Sutter County Human Services, Yuba City, California, USA
| | - Changchun Xie
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | - Frank M. Biro
- Division of Adolescent Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|