1
|
Orenibi E, Illés Á, Sandil S, Endrédi A, Szekeres J, Dobosy P, Záray G. Temporal and spatial distribution of inorganic fluoride, total adsorbable organofluorine, PFOA and PFOS concentrations in the Hungarian section of the Danube River. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136820. [PMID: 39672066 DOI: 10.1016/j.jhazmat.2024.136820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/25/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
The existing technologies in municipal wastewater treatment plants are ineffective in eliminating persistent fluorine-containing contaminants. At the same time, there is an increasing demand for novel organofluorine compounds, particularly in the production of lithium-ion batteries, as well as in the agrochemical and pharmaceutical sectors for more efficient ingredients. This implies that we must account for ongoing changes in the fluorine levels within riverine environments. To determine the fluorine concentration in the water phase of rivers, it is essential to measure both inorganic fluoride and total organofluorine concentrations. These analytes were measured in water samples collected monthly from twelve locations along the Hungarian section of the Danube River during the period from July to December 2023, applying ion-chromatography and combustion ion-chromatography. The concentration of inorganic fluoride ranged from 28 to 76 µg/L, with a median of 45.3 µg/L. The total adsorbable organofluorine concentrations were between 0.22 and 12.5 µg/L, with a median of 2.43 µg/L. To assess the impact of restrictions on the use of PFOA and PFOS compounds, these substances were quantified using a UHPLC-Q-TOF-MS system. A comparison of our data with previously published concentrations in the Danube River reveals a decreasing tendency, justifying the restricted use of these chemicals.
Collapse
Affiliation(s)
- Esther Orenibi
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research Budapest, Hungary; National Laboratory for Water Science and Water Security, Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Budapest, Hungary; Doctoral School of Environmental Science, Eötvös Loránd University, Budapest, Hungary
| | - Ádám Illés
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research Budapest, Hungary; National Laboratory for Water Science and Water Security, Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Budapest, Hungary
| | - Sirat Sandil
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research Budapest, Hungary; National Laboratory for Water Science and Water Security, Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Budapest, Hungary
| | - Anett Endrédi
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research Budapest, Hungary
| | - József Szekeres
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research Budapest, Hungary; National Laboratory for Water Science and Water Security, Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Budapest, Hungary
| | - Péter Dobosy
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research Budapest, Hungary; National Laboratory for Water Science and Water Security, Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Budapest, Hungary
| | - Gyula Záray
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research Budapest, Hungary; National Laboratory for Water Science and Water Security, Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Budapest, Hungary; Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
2
|
Domínguez-García P, Almirall XO, Gómez-Canela C. A POCIS-based approach for the monitoring of pharmaceuticals in wastewater treatment plants: Calibration and deployment challenges. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125641. [PMID: 39798795 DOI: 10.1016/j.envpol.2025.125641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
The impact of pharmaceuticals in aquatic environments requires complementary monitoring techniques to the more conventional grab sampling approach for an improved sample representativity. This study explores the application of Polar Organic Chemical Integrative Samplers (POCIS) in the analysis of a wide range of pharmaceutical residues in wastewater effluent, highlighting its advantages over grab sampling. Passive sampling techniques, extending sampling duration several days or weeks, provide continuous and representative data, improving the punctual nature of grab sampling. Despite their advantages, achieving quantitative results remains a challenge. Calibration through precise determination of sampling rates (RS) is recommended to convert the accumulated contaminant mass on the adsorbent to water concentrations. In the present work, 78 pharmaceuticals were preselected for stability suitability for POCIS passive sampling. RS were experimentally determined for 49 stable compounds: 33 of them had not been previously reported and most the other 16 agree with previous published literature. These RS were used to determine the concentration of pharmaceuticals in a wastewater treatment plant (WWTP) near to Barcelona, Spain over 3 weeks. High concentrations of 1,7-dimethylxanthine (2897 ng L-1), 4-acetamidoantipyrine (191 ng L-1), acetaminophen (165 ng L-1) and rasagiline (152 ng L-1) were found. This study examines POCIS deployment strategies, calibration, and analysis methods for 49 pharmaceutical compounds in an WWTP effluent. This research establishes a robust methodology for quantitative passive sampling of pharmaceuticals in aquatic environments, providing critical insights for more accurate monitoring of pharmaceuticals of environmental concern.
Collapse
Affiliation(s)
- Pol Domínguez-García
- Department of Analytical and Applied Chemistry, School of Engineering, IQS-Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - Xavier Ortiz Almirall
- Department of Analytical and Applied Chemistry, School of Engineering, IQS-Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain; Environmental Laboratory, School of Engineering, IQS-Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - Cristian Gómez-Canela
- Department of Analytical and Applied Chemistry, School of Engineering, IQS-Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain.
| |
Collapse
|
3
|
Miladinova S, Garcia-Gorriz E, Macias-Moy D, Stips A. Transport and dispersion of PFOA and PFOS in the Black Sea. ENVIRONMENTAL RESEARCH 2024; 252:118100. [PMID: 38176628 DOI: 10.1016/j.envres.2024.118100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
A 3-D transport and dispersion model was applied to study the recent past and future dynamics of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) concentrations in the Black Sea for the 2016-2030 period. The modelled surface concentrations show a distinct seasonal behaviour, shaped by winter to spring convective mixing. A significant increasing long-term trend in PFOS concentrations is established, with concentrations in water layers 200 m below the surface increasing at 4-8% per year. Driving mechanisms for PFOA and PFOS transport and accumulation in the subsurface and deeper layers are the cooling of the surface water in winter and the transport of water masses from the North Western Shelf (NWS) of the Black Sea. A simulated 50% phase-out of PFOA and PFOS from 2020 to 2030 shows a 21% reduction in PFOA, while PFOS continues to increase.
Collapse
Affiliation(s)
- S Miladinova
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| | - E Garcia-Gorriz
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| | - D Macias-Moy
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| | - A Stips
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
4
|
Lazăr NN, Simionov IA, Petrea ȘM, Iticescu C, Georgescu PL, Dima F, Antache A. The influence of climate changes on heavy metals accumulation in Alosa immaculata from the Danube River Basin. MARINE POLLUTION BULLETIN 2024; 200:116145. [PMID: 38354592 DOI: 10.1016/j.marpolbul.2024.116145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
This research report provides a comprehensive overview of the historical trends in heavy metal concentrations in the Pontic shad (Alosa immaculata) populations from both the Danube River and the Black Sea, while also exploring the potential influence of global warming on metal accumulation. Through bibliometric modeling analysis, it reveals significant limitations in existing international research, particularly the lack of comprehensive data on the impact of hydroclimatic changes on heavy metal accumulation in Alosa immaculata. Recognizing the critical importance of studies on heavy metal bioaccumulation in Danube shad, this research underscores their significance in defining tolerance thresholds, quantifying the impact of toxic elements along the aquatic food chain, and enhancing the economic sustainability of ichthyofauna monitoring efforts. Furthermore, these studies contribute invaluable insights into the complex dynamics of aquatic ecosystems, offering essential decision-making support for optimizing commercial fishing management practices on the Danube and ensuring robust support systems for industrial fishing endeavors.
Collapse
Affiliation(s)
- Nina-Nicoleta Lazăr
- "Dunărea de Jos" University of Galati, REXDAN Research Infrastructure, 98 George Coșbuc Street, 800385 Galati, Romania
| | - Ira-Adeline Simionov
- "Dunărea de Jos" University of Galati, REXDAN Research Infrastructure, 98 George Coșbuc Street, 800385 Galati, Romania; "Dunărea de Jos" University of Galaţi, Faculty of Food Science and Engineering, 47 Domnească Street, 800008 Galați, Romania.
| | - Ștefan-Mihai Petrea
- "Dunărea de Jos" University of Galati, REXDAN Research Infrastructure, 98 George Coșbuc Street, 800385 Galati, Romania; "Dunărea de Jos" University of Galaţi, Faculty of Food Science and Engineering, 47 Domnească Street, 800008 Galați, Romania
| | - Cătălina Iticescu
- "Dunărea de Jos" University of Galati, REXDAN Research Infrastructure, 98 George Coșbuc Street, 800385 Galati, Romania; "Dunarea de Jos" University of Galati, Faculty of Sciences and Environment, 111 Domnească Street, 800008, Galati, Romania
| | - Puiu-Lucian Georgescu
- "Dunărea de Jos" University of Galati, REXDAN Research Infrastructure, 98 George Coșbuc Street, 800385 Galati, Romania; "Dunarea de Jos" University of Galati, Faculty of Sciences and Environment, 111 Domnească Street, 800008, Galati, Romania
| | - Floricel Dima
- Institute for Research and Development in Aquatic Ecology, Fishing and Aquaculture, 54 Portului Street, 800211, Galati, Romania; "Dunarea de Jos" University of Galati, Faculty of Enginnering and Agronomy in Braila, 111 Domnească Street, 800008 Galaţi, Romania
| | - Alina Antache
- "Dunărea de Jos" University of Galati, REXDAN Research Infrastructure, 98 George Coșbuc Street, 800385 Galati, Romania; "Dunărea de Jos" University of Galaţi, Faculty of Food Science and Engineering, 47 Domnească Street, 800008 Galați, Romania
| |
Collapse
|
5
|
Ghorbani Gorji S, Gómez Ramos MJ, Dewapriya P, Schulze B, Mackie R, Nguyen TMH, Higgins CP, Bowles K, Mueller JF, Thomas KV, Kaserzon SL. New PFASs Identified in AFFF Impacted Groundwater by Passive Sampling and Nontarget Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1690-1699. [PMID: 38189783 DOI: 10.1021/acs.est.3c06591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Monitoring contamination from per- and polyfluoroalkyl substances (PFASs) in water systems impacted by aqueous film-forming foams (AFFFs) typically addresses a few known PFAS groups. Given the diversity of PFASs present in AFFFs, current analytical approaches do not comprehensively address the range of PFASs present in these systems. A suspect-screening and nontarget analysis (NTA) approach was developed and applied to identify novel PFASs in groundwater samples contaminated from historic AFFF use. A total of 88 PFASs were identified in both passive samplers and grab samples, and these were dominated by sulfonate derivatives and sulfonamide-derived precursors. Several ultrashort-chain (USC) PFASs (≤C3) were detected, 11 reported for the first time in Australian groundwater. Several transformation products were identified, including perfluoroalkane sulfonamides (FASAs) and perfluoroalkane sulfinates (PFASis). Two new PFASs were reported (((perfluorohexyl)sulfonyl)sulfamic acid; m/z 477.9068 and (E)-1,1,2,2,3,3,4,5,6,7,8,8,8-tridecafluorooct-6-ene-1-sulfonic acid; m/z 424.9482). This study highlights that several PFASs are overlooked using standard target analysis, and therefore, the potential risk from all PFASs present is likely to be underestimated.
Collapse
Affiliation(s)
- Sara Ghorbani Gorji
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, QLD, Australia
| | - María José Gómez Ramos
- Chemistry and Physics Department, University of Almeria, Agrifood Campus of International Excellence (ceiA3), 04120 Almería, Spain
| | - Pradeep Dewapriya
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, QLD, Australia
| | - Bastian Schulze
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, QLD, Australia
| | - Rachel Mackie
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, QLD, Australia
| | - Thi Minh Hong Nguyen
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, QLD, Australia
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | | | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, QLD, Australia
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, QLD, Australia
| | - Sarit L Kaserzon
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, QLD, Australia
| |
Collapse
|
6
|
Dunn M, Noons N, Vojta S, Becanova J, Pickard H, Sunderland EM, Lohmann R. Unregulated Active and Closed Textile Mills Represent a Significant Vector of PFAS Contamination into Coastal Rivers. ACS ES&T WATER 2024; 4:114-124. [PMID: 38222965 PMCID: PMC10785679 DOI: 10.1021/acsestwater.3c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Despite concerns over the ubiquity of per- and polyfluoroalkyl substances (PFAS), little is known about the diversity of input sources to surface waters and their seasonal dynamics. Frequent use of PFAS in textiles means both active and closed textile mills require evaluation as PFAS sources. We deployed passive samplers at seven sites in an urban river and estuary adjacent to textile mills in Southern Rhode Island (USA) over 12 months. We estimated monthly mass flows (g month-1) of perfluorohexanoic acid (PFHxA: 45±56), and perfluorooctanoic acid (PFOA: 30±45) from the upstream river influenced by an active mill. Average mass flows were 73-155% higher downstream, where historical textile waste lagoons contributed long chain perfluoroalkyl acids (PFAA). Mass flows of PFNA increased from 7.5 to 21 g month-1 between the upstream and downstream portions of the rivers. Distinct grouping of the two main PFAS sources, active textile mills and historical waste lagoons, were identified using principal components analysis. Neither suspect screening nor extractable organofluorine analysis revealed measurable PFAS were missing beyond the targeted compounds. This research demonstrates that both closed and active textile mills are important ongoing PFAS sources to freshwater and marine regions and should be further evaluated as a source category.
Collapse
Affiliation(s)
- Matthew Dunn
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, 02882 USA
| | - Nicholas Noons
- Rhode Island Department of Environmental Management, Providence, RI, 02980 USA
| | - Simon Vojta
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, 02882 USA
| | - Jitka Becanova
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, 02882 USA
| | - Heidi Pickard
- Harvard University John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, 02138 USA
| | - Elsie M. Sunderland
- Harvard University John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, 02138 USA
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, 02882 USA
| |
Collapse
|
7
|
Xu S, Zhang C, Zhou Y, Chen F, Chen F, Wang W, Tang H, Gao Y, Meng L. Occurrence and transport of novel and legacy poly- and perfluoroalkyl substances in coastal rivers along the Laizhou Bay, northern China. MARINE POLLUTION BULLETIN 2024; 198:115909. [PMID: 38096694 DOI: 10.1016/j.marpolbul.2023.115909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
The pollution profiles of 25 legacy and emerging poly- and perfluoroalkyl substances (PFASs) in the estuaries along the Laizhou Bay, northern China were investigated to better understand the new structure of PFASs under international regulations and to estimate the mass loadings of PFASs in coastal rivers. About 39.87 kg/d of PFASs were discharged into the Laizhou Bay by the Xiaoqing, Mi and Zhimai Rivers. Total PFAS concentrations in the Xiaoqing River decreased notably in recent years, but were still greater than the levels in 2011. Contribution of replacement substances exhibited an increasing trend in recent years. However, the long-chain chemicals were still the larger contributors of PFASs. Perfluoromethoxypropionic acid (PFMPA) was first detected with high concentrations ranging from 165.3 to 586.3 ng/L in the Xiaoqing River. The results of this study provided baseline data for ecological risk assessment, environmental management and corresponding development of pollution treatment technology.
Collapse
Affiliation(s)
- Sisi Xu
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, Shandong, China
| | - Cunliang Zhang
- Shandong Provincial Eco-environment Monitoring Center, Jinan 250101, Shandong, China
| | - Yuanhang Zhou
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, Shandong, China
| | - Fanghui Chen
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, Shandong, China
| | - Feiyong Chen
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, Shandong, China.
| | - Wenlei Wang
- Shandong Provincial Eco-environment Monitoring Center, Jinan 250101, Shandong, China.
| | - Hua Tang
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Yan Gao
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Lun Meng
- Shandong Shike Modern Agriculture Investment Co., Ltd, Heze 274000, Shandong, China
| |
Collapse
|